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Abstract—In many engineering systems, the ability to give an Among these are Bayesian, MAP (maximum a posteriori),
alarm prior to impending critical events is of great importance. maximum likelihood, and the minimax criteria. The latter is
These critical events may have varying degrees of severity, and derived from the Bayesian criterion, and seeks to minimize

in fact they may occur during normal system operation. In this th . isk. S tint i d | t
article, we investigate approximations to theoretically optimal M€ Maximum risk. Some recent Interesting developments

methods of designing such alarm systems for zero-mean linear have even described adaptive on-line techniques using the
dynamic systems driven by Gaussian noise. This simple modeling Bayesian formulation [8]. However, there are still considerable
paradigm suffices due to the nature of the engineering and/or computational issues, and a well-defined cost function is still

behavioral systems provided as examples to motivate the use Ofrequired even when the posterior probability is adaptively
these methods. updated’

One example addresses thermal comfort applications for . .
commercial buildings. Another example addresses integrated Here we present two contrasting examples representing
caution and warning health management systems for spacecraft distinct applications. The first example is based upon predic-
propulsion. For both examples, an alarm may be given for any tion and alarm of thermal sensation complaints in buildings,
number of level-crossing events that occur over a specified time previously presented in [3]. As such, some of the technical

period. As such, an optimal alarm system can be designed to warn details for thi | il b ted i .
facility managers or ground-based telemetry data analysts of etails for this example will be presented in a more concise

impending complaints or anomalous engine events, respectively. fgshion. The second example is based.upon fault detection and
This will aid them in making critical decisions about building or  diagnostic work for spacecraft propulsion systems, as alluded

spacecraft operations. to in [9]. However, both examples share the quantification
Index Terms—Optimal alarm theory, Level-crossing theory, Of any numberof level-crossing events that may occur over
Kalman prediction, Anomaly Detection a specified time period. Both examples also assume quite

liberally that the practical events of interest can sufficiently be
characterized by this class of level-crossing events. That is, we
assume that both thermal sensation complaints and spacecraft
T HIS article introduces a novel approach of combiningngine anomalies can accurately be represented by level-
the practical appeal of Kalman prediction techniquegossings, whose processes are characterized or transformed

with level-crossing theory and optimal alarm system desigihto zero-mean linear dynamic systems driven by Gaussian
A comprehensive demonstration of practical application fejpise. More evidence to support this modeling paradigm will
the design of optimal alarm systems has been covered in Bl?presented subsequently.
literature [1], [2], [3]. However, the background theory for several examples of level-crossing events within this class
optimal alarm systems has seen modest coverage by oti@f be studied here, varying from the simple case which in-
authors as well [4], [5], [6], [7]. The latter is by no meansyolves two adjacent time slices, to the much more complicated
a ComprehenSive ”St, but illustrates a cross-section of tbgse that involves a level Crossing event that may span many
primary authors responsible for introducing optimal alarfime slices and exceed the level many times during this time-
systems in a classical and practical sense. frame. The former more simple case is traditionally studied

It was shown by Svensson [1], [2] that an optimal alarh the Swedish literature and invokes ARMA(X) prediction
system is fundamentally based upon a likelihood ratio criteriQfethods [1], [2], [4], [5], [6], [7]. A variant of the latter more
via the Neyman-Pearson lemma. This allows us to design @mplicated case has been investigated by Kerr [10] and uses
optimal alarm system that will elicit the fewest possible falsg Kalman-filter-based approach.
alarms for a fixed detection probablllty This becomes impor- There is an extensive history of invoking Kalman-filter-
tant when considering the numerous applications that mighdsed approaches within the failure detection literature. A few
benefit from an intelligent tradeoff between false alarms arﬂﬂ the most groundbreaking articles that discuss the use of
missed detections, by applying the theory and methodologyiman filter methods for failure detection have been authored
introduced in this article. by Kerr [10], and Willsky and Jones [11]. Both of these articles

There are several other decision rules that can be used fraave a long history of related methods descending from them,
hypothesis testing/decision theory, in lieu of the Neymame  [12] which alludes to the use of the Neyman-Pearson
Pearson decision rule used as the basis of optimality hefgmma. However, these methods have not been without debate
_ _ _ , over the years, with one recent criticism of [11] addressing the
Manuscript received xxx xx, 2007; revised xxx XX, XxxX. This work was_, . : . .
supported by xxxx. claim of its optimality by Kerr [13].
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terized by a formulation of the anomaly detection problemecognized by Svensson as a potential candidate for study in
involving the GLR (generalized likelihood ratio) test. Thahe context of optimal alarm systems [1], p.93.
method derived by Kerr shows how to derive a failure detection In buildings, time-of-day complaint rates and energy usage
algorithm whose design is performed by computing false alarflactuate in a predictable manner. Therefore, it is common
and correct detection probabilities over a time interval. Botlo expect a peak in the complaint rate during the morning,
methods are related to, but not directly derived from optimahlled the “arrival complaint period.” The arrival complaint
alarm system theory based upon level-crossings introduggtenomenon was hypothesized by Federspiel et al. [15] as the
by DeMag [5] and Svensson et al. [2]. As was previouslyesult of a naturally high metabolic rate of building occupants
mentioned in this section, we aim to more precisely closkiring this period. Hence we can look at breaking down the
this gap between the use of Kalman prediction technigues gretiods of interest into two distinct timeframes, described
optimal alarm systems in this article. However, this article iselow.
not meant to serve as a cure-all to the ongoing debate, buill) Arrival and operating complaintsPrior to the start of
rather as a participation in this discussion from a differemite beginning of the day (eg. 8 am), we want to predict an
theoretical angle, infused by a segment of the literature thatival complaint, and all remaining operating complaints for
has been largely overlooked. Furthermore, it is motivated lysliding window of time of fixed length. An arrival complaint
practical examples whose anomalies can be described frhas no restriction on happening at a particular time (i.e., late
multiple variants within a class of level-crossing events in liearrivals are allowed).
of only one. 2) Operating complaints onlyFollowing the start of the
day (i.e., conceivably after the first arrival complaint), we
want to predict all operating complaints any point after the
beginning of the day, for a sliding window of time of fixed

Traditionally, examples of failures using anomaly detectio@ngth.
techniques can be characterized by a level-crossing of a criticairhese timeframes each correspond to different level-
level, L, that is assumed to have a fixed, static value. The leygdcrossing events, to be discussed for this specific application
is exceeded by some critical parameter than can be represefieghore detail in the subsequent section. However, regardless
by a dynamic process, which can often be modeled asofapplication, upcrossings, downcrossings, and exceedances
zero-mean linear dynamic system driven by Gaussian noigge defined as follows:
Most of the theory that follows is based upon this standard 1) Exceedance:A one-dimensional level-crossing event,
representation of the anomaly detection problem. {xy > L}, whereL is some critical threshold level exceeded
by a process whose value at tirhds xy.

2) Upcrossing: A two-dimensional level crossing event,
{Ik <L, Tpi1 > L}.

For the example currently under discussion based on thermag) powncrossing:A two-dimensional level crossing event
sensation complaints, the critical valdeis not fixed. In fact, {zp > L, x31 < L}.
it varies with time, and there are two of these stochasticThe apility to predict the average thermal comfort of a
critical levels: one for hot complaints, and another for coloup of building occupants within a zone during either of
These levels represent the temperature at which a groupef two timeframes listed previously can aid abundantly in
occupants in a zone would complain if too hot or cold. Theyeveloping optimal thermostat setting strategies. Automation
are somewhat artificial, because such temperatures cannopp8ome of the critical decisions that facility mangers often
measured continuously. However, when complaints do occyp not have adequate time to attend to within the building

the temperatures can be measured and stored in a maintengpgfations domain can potentially help to save significantly in
management database. Therefore the statistics of these leyglsrating costs.

can be computed from this database repository, as described
by Federspiel [14], and used to generate a model whose output ) ) )
represents the complaint levels of interest. 3. Spacecraft Propulsion System Anomaly Detection Applica-
The two processes to be used for this example are one of tid
two stochastic critical levels (i.e., the hot complaint level) and The primary parameter of interest for this study that is
its interaction with the controlled process of interest (i.e., trevailable and measured for spacecraft propulsion systems
building or space/zone temperature). In order to transform tliés the control system error, or the difference between the
problem easily into one that fits the paradigm of a fixed, stattommanded and actual throttle. Not only is this practically
threshold, we simply take the difference between the stochastjipealing due to the the fact that there are often hard limits set
critical level and the controlled process, implying tiiat= 0.  on the control system error, but the novel methods described in
Since there are two stochastic critical levels, both hot aritis paper apply quite cleanly to this parameter. This is evident
cold, with differing descriptive statistics, these alarm systendasie to the zero mean of the control system error during non-
will need to be designed independently and implemented tiansient operation, and qualitatively Gaussian characteristics.
parallel. Only one will be presented in the subsequent sectidagrthermore, the control systems were most likely designed
for illustrative purposes. The idea of the critical level itselivith disturbance rejection in mind. Therefore, any anomalous
being modeled as a stationary Gaussian process was asgoursions away from the reference value not explained by

Il. MOTIVATION FOR TARGET APPLICATIONS

A. Thermal Comfort Application
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transients is cause for alarm. As such, the design of a robusAlarm design requires computation of the metrics that char-
detection algorithm and subsequent diagnostic investigatiaaterize the tradeoff that all such systems contend with. This
are of paramount importance in the implementation and deadeoff represents the balance of false alarms versus missed
ployment of such an alarm system. detections. There are several alarm system metrics to choose
A very practical solution to the detection problem is th&om, among them are the ROC curve, percent accuracy,
use of hard thresholds, also commonly known as “redlinegtecision-recall curve, and Type I/l error probabilities, all for
These limits on throttle control system error act as a basic, yetrious border probabilities,). Type /1l error probabilities
very effective measure of implementing anomaly detectioare the false positive rate and probability of missed detection,
based alarm systems. A mixture ratio control system useskpectively.
aboard a spacecraft propulsion system may also benefit fronThe false alarm probability can also be a useful candidate
the application of a similar detection algorithm. Howevefor an alarm system metric as an alternative to the Type | or
redlines are used for a variety of other parameters not udatke positive rate. Technically, if the false alarm probability
for control, and the zero-mean linear dynamic system drivén defined as the ratio of the number of false alarms to the
by Gaussian noise modeling paradigm may break down amsmber of alarms rather than the number of negatives, it is
cordingly. Further investigation of the modeling variants fonot a Type | probability. Here we define Type | probability
different spacecraft propulsion system parameters can be foarsdthe false positive rate, or the ratio of the number of false
in [9]. In this article, one of the primary investigative themealarms to the number of negatives.
for this application is to compare the redline detection methodIn alarm design, we want to find the value &} that
to others, including the novel one introduced in this paper. provides the best tradeoff between Type | and Type Il errors,
Unlike the thermal comfort application, the level-crossingr one of the other alarm system metrics. For the first example
problem can't easily be transformed into upcrossings of a levalolving the thermal comfort application, most of the analysis
L = 0 for either hot or cold complaints. This example requirewas performed by using Type Il error and false alarm proba-
a little more complexity due to the nature of the parameteilities (although incorrectly annotated as Type I/Il in [3]).
of interest. However, there is no need to transform the levétowever, for the spacecraft propulsion system application,
upcrossing problem to be commensurate with a levél ef 0. the ROC curve will be the metric used for comparison of
Rather, because the magnitude of the control system error isafiforithms. The reason for using the ROC curve is that it is
interest, the absolute value of the controlled process exceedingre reliable in the face of uneven examples of nominal vs.
a non-zero levell, becomes the application-specific probleranomalous behavior, as described in [16].
of interest. Here again, there are two critical levels of interest, It is not possible to obtain the exact alarm system metrics
one above the controlled process and one below. In this casealytically, or even by means of numerical integration for the
neither is a stochastic critical level, and both static, fixecbmplicated multi-dimensional events we will present here.
thresholds are symmetric about zero and the negative of edhan alternative, we may perform simulations to obtain an
other. As such, there is no need to design independent alastimateof the exact alarm system metrics. These simulation-
systems that are implemented in parallel. Rather, a singlased statistics have well known estimation error properties.
alarm system can be designed to predict all necessary crossihgy are obtained by running a Kalman predictor, and count-
events. ing the number of correct/false alarms and missed detections
until their relative frequencies converge to limiting probability
IIl. GENERAL APPROACH values. However, with the aid of some approximations, we
In certain cases, specifically for the type of level-upcrossirggn perform numerical integrations of complex integrals, and
events relevant to the thermal comfort application, the compéian avoid these otherwise often very time and computationally
cated multi-dimensional level-crossing event can be approkitensive simulation runs.
mated using a variety of methods. The theoretical derivationsin some cases the number of terms required to compute the
and comparisons of these different approximations are left aetevant probability-based alarm system metrics scale expo-
of this article for clarity of presentation. We refer readers toentially with the number of time steps under consideration.
[3] for more details. While cumbersome to present here, Tis is particularly true for the types of level crossing events
thorough understanding of these details is necessary to futlyaracterizing complaints for the thermal comfort applica-
appreciate the notation used in subsequent sections. tion. As such, approximations are developed to reduce the
Therefore, we introduce the basic notation as a convenienesulting computational burden. One approximation, the multi-
to the reader in the following section. The main notationalimensional approximation, can characterize either of the two
emphasis will be on characterization of the crossing eventsll hypotheses to be introduced and tested in the subsequent
in order to determine alarm regions resulting from use agkctions. Both correspond to the breakdown of the periods
the likelihood ratio resulting in the conditional inequality.of interest into two distinct timeframes presented previously.
P(C|D) > P,. This basically says “give alarm when theAlthough this is the approximation in which the number of
conditional probability of the event;, exceeds the levaP,.” terms scale exponentially with the number of steps in the time
Here, D represents data being conditioned on, dfhdrepre- interval, it may also be used to test null hypotheses which
sents some optimally chosen border or threshold probabilijyantify any combination of upcrossings, downcrossings, or
with respect to a relevant alarm system metric. It is necessaxceedances.
to find the alarm regions in order to design the alarm system.The multivariate probability computations that result from
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the theory presented later are performed by using Genz's @l- Optimal Alarm Systems
gorithm [17]. This algorithm is based upon a robust technique pescribed before, an optimal alarm system is derived based
designed to be used for integrations in multiple dimensiongson a likelihood ratio criterion via the Neyman-Pearson
Traditionally, this code is more effective and computationallymma. The resulting optimal alarm system requires the use
efficient for higher-dimensional integrations, but can be usegl predicted future process values to elicit the fewest possible
just as well for lower-dimensional ones. As such, it helpgse alarms for a fixed detection probability. As stated earlier,
to mitigate the exponentially scaling computational burdefhere are several approximations which may be used as an
Furthermore, it provides a method of computing integralgternative to designing the optimal alarm system based upon
necessary for the design of optimal alarm systems, and alg@ylation, i.e., the “counting method.” These approximations
other failure detection algorithms such as the one most oftgfs |isted below, and are the ones to be studied in depth in
used by Kerr [18], who specifically cites issues with thgyis paper.
computation of these types of integrals. 1) Two-Dimensional Alarm SystemAlso called a semi-
One might question the merit of using such an unavoidabiigve alarm system in the literature [1], [2], it uses the idea of
costly and potentially computationally intensive techniqugptimal alarm. However, the two-dimensional alarm region is
to design an alarm system, when a simpler one might dgpproximated with asymptotes to “rectangularize” it, making
There are several different types of alarm systems, rangift@ region of integration much easier to define. This alarm
in frequency of use and expense. At one end, we haygstem will be investigated for both applications.
alarm systems that require little economic investment other2) Multiple Sub-Interval Alarm SystemWWe may also use
than the accumulation of man-hours of heuristic knowledgghe union of disjoint sub-intervals to approximate the exact
These systems, although quite inexpensive and often lackifieirm region. This approximation was again a recommendation
in sophistication, tend to be the most ubiquitous in engineerigg Svensson [1], although not elaborated on in detail, and only
systems. For the most part, they tend to the job that is require@ant to capture a single level crossing over a time period.
of them: to give alarm for prevention of catastrophic eventgjultiple level crossings over a time period often involve
False alarms would cause loss of production and capital dgsmplicated multi-dimensional events. Therefore, aggregating
to system downtime from the inevitable system shutdown gsss complicated 2-dimensional alarm regions reduces the
a result of the alarm. However, missed detections may caugfmputational load and increases mathematical tractability.
damage, complete system destruction or loss of life, where fhgch sub-interval can be approximated with asymptotes, again
costs are immeasurable. Since complex engineering systefiiking the regions of integration much easier to define. This
may encounter events that need to be predicted by these simigm system will be investigated for the thermal sensation
alarm systems, more sophisticated alarm systems may bec@hplaint example only.
interest. The following list provides a variety of alarm systems 3) Multi-Dimensional Alarm Systenifhe exact alarm sys-
to be compared on an application-specific level, ranging frosm metrics cannot feasibly be obtained for complicated
the most simple one to the more sophisticated ones alludedaglti-dimensional events by means of numerical integration.
previously. However, an approximate alarm region of integration can be
defined as a tight bound on the exact region via the unions
and/or intersections of hyperplanes. In certain cases, this
A. “Redlines” or Simple Alarm System approximation forms a semi-infinite hyper-rectangular region

Typically there is no computational design cost for this typld R, wheren is the dimension of the space, or number of
of alarm system, but rather the cost lies in the knowledéléEd'Ct'Ye tlme steps under conglderatlon. This alarm system
and experience of the users, i.e., heuristics. The basic iq¥} Pe investigated for both applications.
is that certain thresholds are chosen apriori to provide a
window of operation within which a random or controlled
process with random components should be constrained. TAisKalman Filtering and Prediction

alarm system will be investigated for the spacecraft propulsionBefore attempting to technically characterize the alarm

system example only. regions of interest or explain the approximation methods, it
is necessary to address the basic mathematical paradigms that
we'll use. As such, let's assume that a stationary, Gaussian,

B. Predictive Alarm System random process can be characterized in state-space as a typical

An alarm system that uses a predictive method is oftdféar system of the form
called a n&e alarm system [6], [1], [2]. Here, a predicted
future process value would trigger an alarm if it exceeds some
fixed, pre-selected alarm threshold. However, even though the
predictor may be optimal in the least-squares sense, the alarm
system would not be optimal in the sense that it triggers where q; is the unobserved state of the process with
the fewest false alarms for a fixed detection probability. Thimeasured output. Apriori statistics for the input and mea-
alarm system will be investigated for the spacecraft propulsisnrement noise sequences, andwvy, also need to be defined.
system example only. Their covariances are

IV. THEORY

de+1 = Aqg +wi (1)
zr = Cqi+ vk
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Because we're primarily concerned wiphediction we will
need to compute variances of the form

Q
R

E[lwiwi] A
E[u]] Vitile = Var(zpy|zo, . .., 21)

e e

. .. and covariances of the form
We also assumev; and v, are zero-mean Gaussian white

noise sequences without loss of generality, such that~ COM(Zkot4, Thtj|T0, - - -5 Tk)
N(0,Q) andv, ~ N (0, R).

Propagation of theunconditional covariance matrix is
shown below in Eqn. 2.

where i, j are prediction window indices for future process

values. It can be shown thaf,;;, and its covariance coun-

terparts are functions oP;;, and P, and thereforef’i,
and PL, respectively. As a result, they can be expressed as

Py = APLAT +Q @ being lisndepepndent gf the time indéx aﬁhough theypcannot

be expressed as being independent of the prediction window

indicesi, j. Similarly, we will need to compute the predicted

fGture process valug, ;.

whereP), £ Elqrql].

The algebraic equivalent to this propagation equation
PL = APLAT + Q, wherePL, ~ 0 (PL is positive
definite) and it is also the solution to this discrete algebraic

Lyapunov equation. The time and measurement update steps Thpilk 2 Elzgiilxo, - .., Tk (12)
of the recursive Kalman filtering equations are shown in Eqgns. = CElautilzo, ...,z (13)
3-5. Eqgn. 4 represents the Kalman gain. N T
an. & 1ep g = Céprife (14)
. A Obviously, 7,1, can be expressed as a functiondgf,
Akt = AQg 3 but unlike Vit it will fluctuate as new measurements are
A B R L
Fipir = PrpipCY(CPuyCT + R)™? 4) ;neadeer;d;?;su |sénarpr)1p;1rsegrte:11;ealstro Egn. 5, which is directly
Art1jkb+1 = Der1jk T Frgrp(@rer — Cappan) (9) P P -
where iy, x A Elax|zo, . .., ). B. Alarm Regions for Crossing Events and their Approxima-

The counterpartconditional covariance propagation timetlons
and measurement updates for the Kalman filter are shown inl) Thermal Comfort Level CrossingsiWe first present
Eqns. 6-7, respectively. the conditions for alarm based upon the thermal sensation
complaint application. The null hypothesi%{,, shown in
Eqgn. 15 is for at least one complaint during normal building

Pripge = APklkAT +Q (6) operating hours, whera refers to the number of steps in the
Piiijp+1 = Prep — Frp1pCPryapi (7) prediction window. Them + 1 dimensional event region is
given by Q¢ ...,.
where o
AN ~ N
Pye = El(ax — @re)(ar — arpe) " |20, - -, 21] Ho : (Xe€Qg,,., CR™M (15)
Combining the two equations 6 and 7, we obtain the Tk
following: X =
Lk+m
_ m—+1
Py = APy 1 AT — APy CPy AT +Q (8)  Comosr = (K€l BT

= ﬁ{.’L‘k<L,...,$k+m<L}\{CL’k>L}
The stationary version of Eqn. 8 gives us the solution to the ) ) )
discrete algebraic Riccati equation, as follows: In Eqn. 15,~ is the logical equivalent afiot, and the event
given by {zy < L,...,zx+m < L} refers to the fact that

there are no level crossings éf= 0 (complaints) from time
APEAT _ AF,,CPEAT + Q (9) ktok+m,orz; <L,Vjec{k,...,k+m}. The\ notation
PECT(CPRCT 4 R)-! (10) der_\otes set subtraction _of the event defined{by > L},
s 58 which corresponds to arrival complaints.

where F,, represents the steady-state Kalman gain. How- N this case, the condition for alarm leads to the inequality
ever, we're interested in the updated aposteriori steady-stgf@Wwn in Eqn. 16, via the Neyman-Pearson lemma [1], [2].

covariance matrix, which is the stationary version of Eqn. ¥is inequality and Eqgn. 15 are meant to characterize the
given by: “operating complaints only” scenario as accurately as possible.

In Egn. 15, operating complaints can be defined with any se-
R guence of process values above or below the critical threshold,
PE —pli _pECT(CcPECT + R)~'CPE (11) as long asall of the values don't lie above the threshold, and

PR
F.,

>
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the first process value is not above the threshold (to keep fram upcrossing, where the process itself is not restricted to
counting arrival complaints). being above or below the critical threshold at the end of the
interval. Therefore, this approximation will miss around half
of the upcrossings/complaints caught by the exact condition.

P(ay <LID) = Plax < L,...,2kem < LID) 2 Py (16)  hyopever, using it will greatly reduce computation time, and

where:D = {x,...,z;}. The corresponding exact alarmthe answer can be achieved via numerical integration, without
condition can be partitioned as follows: the use of simulation.

The upcrossing approximation is shown in Egns. 20-24. By
using it, not only do we reduce the dimension of the alarm

JaN < m+1
Aczact = {5§ € Qapoe CR™} region fromm + 1 to 2, shown in the first step via Eqn. 20,
= {X: P(Ceract|D) > Py} but a “rectangularized” two-dimensional approximation is used
= {X:P(zy < LID) for further ease of computation. Recall that a two-dimensional
alarm system is one that actually uses the idea of optimal
- : ... 1M Z H H H H
Plag <Ly, Zepm < LID) 2 P} alarm. The exact2D alarm region is approximated with
where: asymptotes, making the revised region of integration much
Th Brin easier to parameterize. The “rectangularization” is apparent in
s b Fig. 1.
X = ] , X = E[X|D] = + ! To find the asymptote correspondingig,, we derive the
: : limiting distribution as the remaining dimension is marginal-
Th4m Thymlk ized by takinglimg, ., —co Of EQn. 20, yielding Eqn. 21,
Hence it is easy to write the formulae for correct
alarms/detections: P(zy, < L, Tpym > Llzo, ..., 21) > P, (20)
 lim  P(xg < L, Tkym > Llxo, ..., 28) =
Let _ X 17 Thtm |k —OQ
X=1x (7 P(zy < Llzo, ..., xx)

Correct Alarm:
P(Ceacacta Aezact)

P(Ceract|A . = 18 P($k<L|$0,...,Jlk)2Pb
( ex ct| e;cact) P(Aexact) ( )
— fQCezact fQAea:act, N(X’ Mx’ Ex) dx ﬁ
fQAemct N(Xv M EX) dX jk\k <L- Vk|kq)_1(Pb) (2]_)
Correct Detection: P(Chvacts Acwact) where ®~!(-) represents the inverse cumulative normal
P(Aczact|Cezact) = ;‘(“g’ eg)md (19) standard distribution function. Similarly, to find the asymptote
exact

corresponding 0%y, x, We derive the limiting distribu-

B fﬂcmct fQAmc,, N (3 px, Ex) dx tion as the remaining dimension is marginalized by taking
Joo  N(X i, Xx) dX limg, , .o Of Eqn. 22, yielding Eqn. 23.
These probabilities are necessary in order to compute the
required alarm system metrics. The probability of correct P(zy < L,xpsm > Llzo, ..., 25) > By (22)
alarm measures Fhe ability not to gengrate false alarms (pur_iFy), ~lim P(xg < L, %kym > Llzo, ... 21) =
and the probability of correct detection measures that ability — kix—~7°
not to miss any critical anomalies (completeness). We know P(2gym > Llzo, ..., o)

that computing these integrals, specifically the alarm region,

. . P(xy, > Llxg,...,zr) > P,
Aczact, 1S an intractable problem. Therefore we must use (@hm w0, ) 2 Py

a simulation to obtain estimates of such probabilities. But ¢
instead of using this “counting” method via simulation, we
can compute their tractable and much less computationally Ermik > L+ Virmp® ' (By) (23)
intensive approximations. where:

The first approximation for the exact alarm region corre- '
sponding to operating complaints only and givenAy,q.; = Viewilk = Var(ziii|xo, ..., xk) (24)
{X: Pz < LID) — P(z, < L,...,Tp4m < L|D) > Py} is _ C(Az(]:j,fs _ Pﬁ,s)(AT)i JrPSLS)CT R

a single interval two-dimensional approximation. In this case

we only consider two time sliceg; = 0, ¢ = m}, which The alarm region can therefore be approximated by the two-
span the entire time interval being considered. The procefimensional intersection of the two inequalities represented in
value,z; is below the critical threshold at the very beginnindeqns. 21 and 23.

of the interval, z;, and above it at the very end;i,,. Notice that there are several two-dimensional alarm regions
The exact null hypothesis captures at least one complagtitown in Fig. 1, for values oP, ranging fromo0.1 to 0.9, in
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2D alarm regions for various First, recall:

P_values, above the solid curves
b Cozact = ~{xx < L,...,2ppm < LY\ {zx > L}  (25)

S0rp 2099 | , : N
bW 3 0.9 The resulting alarm sub-interval approximations are as fol-
s Y ' lows:
40 ‘ ] . .
J 05 08 A = {xk-i-si,\k < Xsi’xk+51+1|k‘ > ysq‘,+1} (26)
0.7 L _
30! 2 /] el | [o7 X, = L= \[Vieo, ;@ (P) 7)
% 77/7/7/ 705 | |06 y5i+1 = L+ \/ Vk-ﬁ-sul\k(bil(Pb) (28)
& 200 — {05
104 .
10- where the extremes of the interval < s;,s,41 < m
0.3 correspond to endpoints of all possible subintervals, given
by indicess; and s;;. The approximate alarm region can
o | |o.2 therefore be written astappron = UY:, 4;. Formulae for
‘ ‘ ‘ ‘ ‘ 0.1 correct/false alarms and correct/missed detections can be de-
145 15 155 16 165 17 veloped, as shown in Eqns. 29-32.
Tk
! o ) Correct Alarm:
Fig. 1. Approximation to theD Alarm Region forP, = 0.99 P(C A )
P(Ce:l;act‘Aapp’r'o:L‘) — exacty {lapprox (29)
P(Aapp'r‘occ)
) ) ) Correct Detection:
gradations of).1, all for m = 5. Each of the regions is convex, P(Ceract; Aapproz)
above and to the left of which is considered the alarm region. P(Aapproz|Cezact) = P(Cozact) (30)
However, .performing an integrgtion over this two-_dimension_al False Alarm: o
alarm region may require storing the contour points along its , P(O/ o)
border, or other approximation methods that consume quite @  P(Cepuet| Aappros) = cracl; __pRror (31)

P(Aapprom )

bit more compute cycles than the respective “rectangularized”
= 1- P(Cewact|Aapprow)

2D alarm region. For the specific case Bf = 0.99, we can . _
see the asymptotes in Fig. 1 that define the approximation, Missed Detection:

’

which bound the two-dimensional alarm region. Integration PlA c  P(Cegact, Aupproz) 32)
over this region is much easier, and the magnitude of the error (Aappros|Cevact) = P(Ceract)

introd_uced by this _addi_tional approximat_ion W@II not be on = 1= P(Aupproz|Cevact)

par with the approximation of thert + 1"-dimensional exact o . )

region with a reduce@-dimensional region. In order to compute the deceivingly simple-looking for-

gmlae in Egns. 29-32, we need more detailed equations for

previous section, and “catch” more of the cases missed ’S)?AGPPT”)’ P(Cevact, Aapproz), @nd P(Cegact), Which are

the single two-dimensional interval, we can split the interval O\_"ded in [3]. R(_ecall_that the Ce_ntral idea of the mult|ple
Iﬂubmterval approximation method is that less complicated 2-

into NV, disjoint two-dimensional subintervals, and constru ional al . d th duci h
alarm systems for each subinterval. Here we’d like to comp ensional alarm regions are aggregated, thus reducing the

relevant aggregate alarm system design probabilities for té%mrﬁ)utagpnal Io?d anbd Increasing m dath.erqnatlcal tractablhty_.
entire interval in question, by taking thenion of the alarm ach sub-interval can be approximated with asymptotes, again

systems corresponding to each subinterval. Practically, taking the regions of Integration mu_ch easier to define. '_I'he
means that if any one of th&/, sub-interval based alarm case used to illustrate the approximation above was for a fixed
systems sound, then the alarm system as a whole sourfitical threshold, conS|der|n_g operating cor_nplalnts only. .
Obtaining the approximate two-dimensional alarm regions forIf V‘Ile, were 'g)_ﬁhave ccl)nS|dere<_j both a}(rjn\r/]al and opIJerdanRg
each subinterval is easy, and is based upon the same Iogit?‘?rq:]p "?‘t'nts’ a trl1 errﬁntta arm r%glor;hwofu i tﬁvte resu ;[e - AS
Egns. 20-24. In order to determine the aggregate alarm syst%ﬁ’ﬁ » 1L 1S worthwhile “0 consider ? act that arrival com-
design probabilities, we use Eqns. 29-32. But first we need Q@lnts are defined as “exceedances,” defined earlier. Because

define the alarm sub-interval approximation provided in Eqngxceedances_ are defmeq n smgle time slices, we dqnt knqw
25.28. about the arrival complaint until the exceedance terminates in

some subsequent time slice. Therefore, the arrival complaint
may best be determined with knowledge of a downcrossing,
1These sample alarm regions were generated by using a very sima§ opposed to an upcrossing.
example (c.f. Process 1 from Svensson et. al. [2]) solely for illustrative The final . . hod i ide the b
purposes at this point. None of the alarm regions are based on models! N€ final approximation method is meant to provide the best
generated from experimental data. possible approximation to the alarm region for the thermal

To improve upon the approximation introduced in th
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Exact alarm region for Pb =0.99

>

Aea:act = {X S QAEIaCt C R"H—l}
30 — {X:P(a, < L|D) -

Plap < L,...,Zpem < L|D) > Pb}
=920 { Multi-dimensional approximation
[a\] g ~
: _— Auppron = {X€Qa,,,,, CR™}

<8 . m
10 = {X;Aoﬂ J 4 } (33)
i=1
Xo
0 A 1
155 whered, = T < L— Vk‘kq) (Py)

1>

A; Eogile = L+ \/Vigip® 1 (Po)
4 12

Tk|k 145 ¥

1
18 16

20, )
14 24 22 Zrr1)k Vi € 1,....,m
The multi-dimensional approximation shown in the chain of
logic above can be further elaborated on. For all asymptotes

Fig. 2. Exact Alarm Region forn = 3 . N .
corresponding ta& %, Vi > 0, we have:

lim Pz < LID)—P(ax < L,...,25sm < L|D) =

X\ﬁ:kJr“kﬂfoo

1—P(zpyi < L|xo, ..., xx)
sensation complaint application, given by, = {X : and 1_p I > P Vi 0
P(xy, < LID) — P(xx < L,wp41 < L, ..., 2psm < LID) > — P(airi <Lizo,...,wx) 2 P, Vi >
P,}. We know that the alarm region does not serve as a 1
well-defined region of integration. Therefore, teeactalarm
system metrics cannot feasibly be obtained for complicated " ¥, 34
multi-dimensional events by means of numerical integration. L—J1 k (34)

To illustrate this fact, Fig. 2 shows the exact alarm region, for
operating complaints only, whem = 3 and the multivariate ~ Furthermore, for the remaining asymptote corresponding to
Gaussian integrand ig-dimensional. The alarm region isZx|x, We have:

aboveand to the left of the surface shown.

~lim Pz < L|D) = P(xx < L,...,Zp1m < L|D) =
It is apparent from the figure that the surface of the exact\Zxx—

alarm region boundary is quite complex and does not serve ;. Py < Lyagis > Ly oo thsm > L|D) + ...
as a feasible, parameterizable integration region. However, ag\z,, —oc
approximate volume can be defined as a tight bound on the wk+i>L,Vi€[L,m]
exact region via the unions and/or intersections of planes. .
This approximation forms a semi-infinite hyper-rectangular X\QE‘?_}MZP(M <L, T|D)
region in multi-dimensional space. For operating complaints
only, the region of integrationA,,,..., has the following Wwhere
representation:

J

1>

IDE

7

{

lim  P(xy < Lyxpy1 > Ly, Tpym > L|D) =

X\ik‘k—m)o

(karfL' > L\/j Tpti < L) ‘ i xpgs < L}
1

wk+i>L,V’i€[1,m]

P(zy, < L|xo,...,Tk)

2This is also a sample alarm region generated by the same example as in N . .
Fig. 1. It is provided solely for illustrative purposes at this point and not based and due to the definition of the s&%, if 3 : x4 < L,
on models generated from experimental data. then
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i ik > L+ Vierariwn® (P
lim ZP(xk<L,Tj|D)=0 Ux’”d*"“— bravik® (5

1=0
J Ya+i
Therefore Note that the future predicted values do not begin util
. steps out, in order to allow for a finite window of prediction
X\jl:lfioo P(ay <LID) = P(ag < L,..., 2pm < L|D) = prior to the beginning of the day. This is distinct from the
- steps corresponding to the prediction window during normal

X\:ﬁk‘kaoo

P(zy < Llzo, ..., k) building operating hours. The formulae for correct/false alarms
and and correct/missed detections for both cases are similar to the
Py < Llzo, ..., z1) > P, ones shown in Egns. 29-32. Again, the computational details of
P(Aupproz)s P(Cezact, Aapproz)s aNd P(Cegzqcr) are omitted
i here for the sake of clarity, and are provided in [3].

) 1 2) Spacecraft Propulsion System Anomaly Detection Appli-
Tl < L=/ Vi® (B) (35) cation: As with thermal sensation complaints, anomalies that

Taking the intersection of Egns. 34 and 35 yields th@CCur within a spacecraft propulsion system may not have a
approximation shown in Egn. 33. A similar procedure cafiréct operational mapping to any one type of level-crossing
be used to derive the multi-dimensional approximation to tffyent. Therefore, we will provide a comprehensive review of
alarm region for both arrival and operating complaints. In thi§any different examples within the class of level-crossing
case, the null hypothesis and resulting level-crossing ev&YENts having a fixed threshold. The examples are listed with

changes, as shown below in Egn. 36. detailed explanations, all of which use a prediction window
denoted byd.
a) Up/downcrossing event spanning an intervdrhis
Ho : (X€Qc,,., CR™M) (36) event is very similar to the single interval two-dimensional
Tktd approximation described previously for thermal sensation
X = complaints. Recall that two time slices spanning the entire
time interval {|x;| < L,|zx+q| > L} are considered. The
Trtdtm main difference is that the absolute value of the process is
Coract = {X€Qc,.., CR™ considered, mimicking an envelope detection problem. The
= —{2pa<L,...,Thidgpm <L} logic for this stems from the fact that the control system

error is the primary parameter of interest, which can be either
positive or negative. Therefore, the process value is within
the interval[— L, L] at the very beginning of the interval, and
outside of it at the very end. The probabilify(Ceract) IS

c R™T1) shown in Eqgn. 38, and is the same regardless of the alarm
system used.

The resulting the region of integratiod,,,..., has the
following representation:

Aeract é {X € QAema,ct,
= {X:l—P($k+d<L,...,
Thtdem < L|D) > Py}

- . L P(Cegact) = P L, L 38
{$ Multi-dimensional approximation ( t) (Ek‘ <L [ok+al > L) (38)
Auppros = {X€Qa,,,.. CR™1} = [ [L N (x; px, Bx) dx + ..
“ m 0o L
= ¢X: U A; (37) / / N (X5 pixey Xxc) dx
i=0 L J-L
. m - T o Cﬂq 9
= {X:U-f?k+d+i|k2yd+i} x = {x,ﬁd }’“x { Cuq €R
_ Eqgn. _37 gives the ap_prommaﬂon for_ the candld_ate region of x = CAdPSLsCT CPfscT +R
integration for both arrival and operating complaints, and can A '
be derived for all asymptotes corresponding:fQ g, Vi > pq = FElai]
0, as follows: b) End of interval up/downcrossing evenThis event
lim 1— P(xpiqa <L,...,%hsarm < L|D) = is similar to an up/downcrossing event spanning an interval,
R\Eppayip——00 except that the two time slices are adjacent and the event
1 — P(wpsqsi < Llzo, ... zx) occurs at the very end of interval, shown mathematically in
Eqgn. 39.
and A
Cemact = {‘xk+d| < L7 ‘xk+d+1| > L} (39)

1-P ;i < L .. > Py Vi > . . . .
(@htati < Llzo,...,zx) 2 B, ¥i 2 d The probability P(C, ) is shown in Eqn. 40, and is also

| the same regardless of the alarm system used.
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d —L L L
+Z/ / / N (x5 i, » Bx;) dX;

P(Coraet) = Pllonsal < Lfonsan| > I) (40) N
i+
= / / N (X px, Bxc) dx + ...
Tk Crq
. j+1
/ / N (x5 pixe, Bxc) dx Xj = 1 Hx; = : R
L J-L Th+j Crq
x = [;‘Hd ] Sy (i) CPLCT+R 1<iy=iy<j+1
k-‘ri—'rlT . x;\t1, 62 CXSSCT 1§ Z’l # ’l’2 S]+]~
CP,.C' +R CX,sC ipL [ Ai\T i in\T
Ex = S5 Xss = A"P A" LSS - AllLSS A"
[ CX,.CT CPLCT+R ) L A(T Lj.l . (A7)
65 = s 271 Q whereiy < i
Xss = AdPﬁs(Ad+1)T"'_Lss_Adpﬁs(Ad)T A " Q " *

L, = ALSSAT + AQ Ha E[qk]
e) At least one up/downcrossing event within an interval:
c) End of interval exceedance/fade eveiiihis event is Thjs event is identical to the previous level-crossing event
similar to the end of interval up/downcrossing event, 0n|¥xcept that two-dimensional up/downcrossings are considered

event. Therefore, the level crossing condition reduces to EQ@ actually simpler, as in Eqn 45.

41.

A d (j-1
Cezact = {|Tr+al > L} (41) Clomact 2 U {ﬂ |Zkri| < L, |Tpsj] > L} (45)
The probability P(Cezaet) is shown in Eqn. 42, and is J=1 Li=0
also equivalent to thg-value. This important relationship has The probability P(Ceyec:) is shown in Eqn. 46, with
practical value and will be discussed later. identical definitions ofx;, 1y, Xx, as in the previous case.
d Jj—1
P(Cemact) = P(lxk+d| > L) (42) P(Cemact) = Z ﬂ |Ik+7‘| < L ‘Ik+j| > L) (46)
= 20 —; d
\/CPLCT + R = Z/ / / N (% by B, ) dx;
= p j=1
d
d) At least one exceedance/fade event within an interval: + Z / / / N (x5 pix;, Bx;) dx;
This event was introduced by Kerr [10] as a problem for study, i=1

and can be represented as shown in Eqgn. 43.

For each of the five I|sted cases:e, we will study and
compare the results of three distinct types of alarm systems,
previously introduced. The alarm system metrics of interest for
this application are the ROC curve statistics: the true and false

(43) positive rates. Egns. 47-48 summarize the formulae necessary

All exceedance sub-events in the expression are muto-compute these statistics. Notice that the true positive rate
ally exclusive. The expression represents all combinatiosBown in Eqn. 47 is identical to Eqn. 29, for the probability of
of exceedances within the given prediction windalv, The correct alarm, also know as recall. There is overlap here, and
probability P(C..qct) is shown in Eqn. 44. there is also usefulness in looking at different alarm system

metrics, which is discussed at length in [16]. In general,
as long as the following three probability computations are

d [j—1
N
Cezact = {lzk| > L}U U [ﬂ |Tk+il < L, |zgeg| > L

j=1 Li=0

P(Ceract) = P(lzp|>L)+... performed:P(Ceract), P(Aapproz), @nd P(Ceract, Aapproz ),
d  J-1 any relevant alarm system metric can be derived.
Y P [zkgil < Ly fanyg) > L) (44)
=1 =0
’ d j—1 True positive rate:
= D + Z P( m ‘xk+’b| < L7 |Ik+]‘ > L) P(Cpmact|Aappro'p) — P(C@mact; Aapproz) (47)
J=1 =0 ) ) ' P(Aapprox>

False positive rate:

’

d co L L
/ P(C 7Aa ToT
=r+ Z/L /L o / LN(Xj; ﬂxj’zxj) dxj P(Aappror|cemct) = ( Ll Ly ) (48)
j=1 - -

P(C!

ewact)
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a) “Redlines” or Simple Alarm Systemin order to
introduce the use of redlines we first make the distinction

between the critical levelL, and the redline, denoted as P(Aappros) = Pllzx| > La) (51)
L 4. The critical level represents the threshold above which La

damage or some significant decrease in quality of a behavior = 20| ——F——

or process may potentially occur. There are some cases in \CPLCT + R

which this critical level is not known, have not been designed r mentioned previously
a priori, or when known critical levels yield alarm systems..|  event P(Copaet), as 'weII as the probability of
’ exrac 1

that are practically infeasible. The latter case usually OCCUIR, m P(A ), and the joint probability of the two
when the thresholds are set to levels so extreme that the~ approws !

. - . vacts Aapprox ), SUffice to compute any relevant alarm
resulting probability computations default to null values. Aééfsjtélmménetcrlipéjgis)ince we already hpave theynecessary formulae

such, sometimes it is beneficial to use values that are bas COMPUing P(Cozaer) and P(A ), we provide the
upon statistical outlier detection and hypothesis testing via th&:siled formulae fgmdaf(c approt

) . y exacts Aapproz) 1N Appendix I.
p—value..The relat|.0nsh|p between the critical levgl,and the b) Predictive Alarm Systenithe predictive alarm system
p-value is shown in Eqgn. 49

uses a similar fixed, static threshold,, akin to the redline
. D . method. However, rather than the current process valyge,
Lequiv = ® (1 - 5) \VCP,CT + R (49) Dbeing used, predicted future values,, 4., are compared to
. . . . the alarm level,L 4. The probability of alarm for a predictive
The red"?‘? value given by, is a different paramete_r alarm system regardlesz of Ievgl-crossing type F;s given by
than the cr|t|_cal IeyeI,L, and essentially acts as a de.s.'g gn. 52. For the case of the end of interval up/downcrossing
parameter with which to tune the alarm system sensmv%

the probability of the crit-

. . . vent, the predicted future value o is used in lieu
Its value is the level at which an alarm would literally soun P hratik
and whose selection may be performed manually via brute
force gridding, or related to the use of a log-likelihood based

Lk+d|k-

method. Using the log-likelihood based method provides a®(Aupproz) = P(|Tptak] > La) (52)

alternative method of design for the alarm system that is

essentially equivalent to choosing a redline value viathie — 929 [ — La

distribution using the following equations: \/CAd(P£S _PR)(ANHTCT
P(log(p(z; 0, CpgscT +R)<I)= We present the formulae for computing the probability of

P(Cegacts Aappros) for all level-crossing events of interest in

1— 3 <—2 {z + %bg(%) +log\/CPLCT + RD =  Appendix Il.

c) Optimal Alarm System:The optimal alarm system
uses a concept introduced earlier, by defining the alarm region,

20 <—\/—2 [z + %log(%r) +log\/CPLCT + RD —  Acaact, as follows:

_LA ) _LA ) Acract é {X : P(CeracthO; CIEa ,.Tk}) Z Pb}
20 | | =29 | — o - :
/cPLCT + R ( o ) _ whereX is a vector of all predicted future process value_s,
58 I.8., Tx|k» Trtqr that correspond to the future time steps in
Therefore, Eqn. 50 represents the equivalent value for the definition of the critical event;,,q.:. In this case, there is
wherel! is a design log-likelihood based threshold. no fixed, static threshold, 4, akin to the redline or predictive

methods to act as a design parameter. However, the border
1 probability, P,, acts in place of. 4 as an alarm system design
Lacquin = \/20’2 {l T3 log(27) + log ‘7} (50) parameter. As seen previously for the thermal sensation com-
plaint application, the alarm region can be approximated easily
In general, using the log-likelihood value as the basis @y using a variety of methods which use inequalities involving
outlier detection allows for greater accessibility of infinitesipredicted future process values, i®4.q,- Depending on the
mally small values of the significance level (i.g= 1x107%)  type of event under consideration, the approximation will vary.
for the corresponding hypothesis-based decision test. A megwever, in general there are two types of approximations that
thorough discussion on the use of this approach for alagan be made for the spacecraft propulsion system anomaly
systems can be found in [9], [19] and [20]. Note that agetection application.
equivalentp-value for the design parametdr,,, can also be  unlike the probability of alarm for a redline or predictive
found with Eqn. 49. The probability of alarm for a redlinegjarm system, the optimal alarm system’s probability of alarm
alarm system regardless of level-crossing type is given Rydependent on level-crossing type. As such, detailed formulae
Egn. 51. Note that the alarm system never uses any predic{@ﬂp(Amnm) and P(Cepact; Aapproz) for all level-crossing
future values, only the value at the current time, such thafents of interest are provided in Appendix Ill. However, as
Agpproz 2 {lzg| > La}. a precursor, we must derive the two types of approximations
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to the alarm regions required for computation of these proba- Closed form approximations (spanning event for 1 ster
S > - ) Alarm regions for L =3 Alarm regions for L = 6
bilities. We begin with an up/downcrossing event spanning an

; - ) ) 20 0.9
interval, whose alarm condition is shown in Eqgn. 53. U 08
10 10 ) 0.7
P(|z| < L, |zk4a| > Llzo, ..., 7x) > Py (53) = o ML — = o g'g
£ = n .
lim  P(lzk| < L, |xg+a| > Ll|zo, ..., 2k) = ey i\ & —— 0.4
|2k 4a|k | —00 / _10 — 0'3
P(|lzk| < Llo, - .., 1) ~10 ﬂ | @ 02
—20 LLE L
0 -10 0 10 -10 0 10 01
e > Lk|k Tk
Pllex| < Llzo,... o) = By 54 Alarm regions for L = 11 Alarm regions for L = 16
The first approximation can be thought of as a “closed- J 0.9
form” approximation, meaning that at least one of the re- 20 L 20t ||| ) 08
sulting inequalities involvingi;;, and ;4 can be ex- 10 o 2 = 0.7
pressed directly as a function of the model parameters. The = = 0 0.6
second approximation can be found as a one—dimensionalg 0 ge 0.5
scalar nonlinear root-finding problem, [21]. The asymptote — -10 [[77— — g'g
corresponding ta, ;. for the first approximation can be found _ R -201 (|1 0'2
in closed form by taking the intersection of the inequalities in ( 0.1
Eqns. 55-56, culminating in the alarm region represented by =~ 20 :i:o 20 —20 io‘ 20 '
K|k K|k

Egn. 57. An additional approximation is introduced by taking
the intersection of these two inequalities. These inequalities
come from Eqgn. 54, which is derived by finding the limitingrig. 3. Closed-form approximations for sample alarm regions
distribution as the remaining dimension is marginalized by

taking limyz, ., |—oo-

(i
Pay < L‘xo oxE) > By (55) . _1 +
B z | > L+ 4/Vi O (P) =1L (59)
P(ay > —Llwo,...,z1) > Py (56) e ik A
T Although this provides a closed-form approximation, there
is inherently no mathematically defensible argument for doing
|Zke] < L—/Vep® ' (P) = L, (57) so. As such, we provide the more mathematically correct

o . r}afijproach, which is akin to the root-finding approximation
The closed-form approximations shown in Egns. 53 a ethod, by solving for the zeros gf(xx, h rajk) loyxo

57 are similar to the optimal two-dimensional alarm regiog,quwn in Eqn. 60, given a particular value B, yielding the
approximations from the previous application found in Eqnﬁsymptote for the alarm region correspondingitq 4, Such
22 and 23, respectively. The sole difference is thaf is that |5 ais] = L% for f(Eres Ervar) |2, —0> 0.

used in place of, for the current example. The root-finding Ftdlkl = ~a kb Hetdlk ) 12416=0=
approximation can be found by solving for the zerog 0f#,;.)
shown in Eqn. 58, given a particular value Bf, yielding the  f(&yx, Zx1aix) = P(|zk| < L, |2g4a| > Llzo, ..., xx) — Py
asymptote for the alarm region correspondingitg, such (60)
that |&,| < L, for f(&y) > 0. Therefore, no additional

. A A . L 0o L —L
approximations are introduced beyond using the asymptotes_ / / +/ / N(x; px, Bx) dx — P,
themselves. Je 1) e

where

flagp) = 0 [ ZoZHn ) _g (ZL Tk ) p o (sg) )
klk NGO NG b x:{ Tk }#x:{ Zaik }ERQ

Thtd|k Thyd)k
When deriving the asymptote fay, . /5, there is no limiting o
approximation as in Eqn. 54. As such, in order to make aa{‘d Dxc(in, i)
closed-form approximation, we use an intuitive approach by
taking the union of the following inequalities, culminating in CplngT +R i1=ips=1
the alarm region represented by Eqgn. 59, again introducing Nc [Ad(PR _pL j‘(Ad)T YPLICT 4R iy —iy=2
additional approximation. 53 53 53

c[pr - (A7) c” iv # i
P(zp4a > Llxo,...,xx) > B Figs. 3 and 4 depict the qualitative nature of both the closed-
P(zp4qa < —Llzg,...,zx) > B form and root-finding approximations to generic sample alarm
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Root finding approximations (spanning event for 1 st¢ of 1, and asP, increases, the closed-form approximation

Alarm regions for L = 3Alarm regions for L = gg worsens as seen in Fig. 3. The same is true for the root-finding
20 ' method, however, as seen in Fig. 4, the asymptotic bounds
10 | 0.8 are tighter. This implies that the alarm region represented by
/ 10 0.7 Eqgns. 57 and 59 (closed-form approximation) provide a poorer
= ' = 0.6 approximation to the alarm region than with Eqns. 58 and 60,
Y E— + 0 0.5 when using the root-finding method.
= = 7 0.4 The alarm condition for an end of interval up/downcrossing
-10 -100 i) 0.3 event is shown in Eqgn. 61.
0.2
=20 0.1
"o 10 "o 0 10 P(|zktal < L, |pya+1| > Llzo, ... xx) 2 P, (61)
Lk|k Tk|k
Alarm regions for L = 11Alarm regions for L = 16 We will forgo the derivations of the two types of approxi-
J 0.9 mations to the alarm regions, as they are similar to those for
20 L 20 il 0.8 the up/downcrossing event spanning an interval. As such, the
100 ML= % \ 0.7 resulting closed form alarm regions are shown in Eqns. 62 and
= = 0.6 63.
T o0 T o0 0.5
=2 =
<K - ] 0.4 A . B
-0 |7 — : 0.3 [Trrar] < L—y/Vigap® (B) =L,  (62)
-20 ‘
-20 0.2 . _
( o1 Errariel > L+ \/Vipapp® ' (B) = L} (63)
-20 0 20 -20 0 20 '
Tk Tk The resulting root-finding alarm regions are governed
by the same inequalities in Eqns. 62 and 63, and
L} can be found by solving forf(&;q4%) > 0 and
Fig. 4. Root-finding approximations for sample alarm regions f(i'k+d\k; fk+d+1|k) |£k+d|k:02 0, where
regions for values of?, shown in gradations of 0.1, respec- ,, . B ke LA T e ke LA P,
tively. These sample alarm regions are based on various Ievglg htdlk V Vitdk NA
as shown in the titles of the subplots in the figures and the . .
following covariance matrix: and f(Zxdjks Trrdrije) =
[ 16 6 :| |$k+d| <L, |$}€+d+1| > L‘:I:O, v xg) — Py
Yk =
6 9
.. . . . / / / / Xﬂx,Ex)dePb
This simple covariance matrix was generated by forming a co-
variance matrix based upon the following standard dewanWh ere

of the random vectok: A
4 X — { Thtd|k } i = { Thetdlk } c R2
3 LTh+d+1lk Thtd+1|k

. . , . . dXy(i1,i2) =
The correlation coefficient used gs= 0.5 in order to simulate an (i1, 32)

the eccentricity that would most likely be introduced in real CPk+d|kCT TR i —iy—=1
data so as to illustrate that the data are not independent, but CPk+d+1|kCT TR i =iy =2
correlatec CX,,CT i1 # o

These alarm regions are based upon Eqn. 53, and the closed-
form and root finding approximations are shown in Figs. 3 and Where
4, respectively. Looking very closely at the figures, one can see
the exact plots are represented by the curved regions, and are Ad(pi —PL) (Ad)T +PL
approximated by the rectangular bounds that represent both the o T
closed-form and root finding approximations. Improvement in -~ Pridt1jx ATH(PL -PL) (AT +PL
t_he approximations can be discerned by_ closely examining the X,, = A4 {Pi (A)T _ Lss:| (Ad)T YL
tightness of the rectangular bounds. Notice that the approxima- )
tions improve ad. increases in both Figs. 3 and 4 due to thgndL,, = AL,,AT + AQ

eccentricity of the alarm regions. In contrast, for smaller valuesThe alarm condition for an end of interval exceedance/fade

) ) event is shown in Eqn. 64.
3As such, these sample alarm regions are again generated solely for

illustrative purposes and are not based on models generated from experimental
data. P(lxk+d| > L|.T07...,{L‘k) > P (64)

1>

Piiak

1>
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Again, we will forgo the derivations of the two types of % T — L o —Zg — L
approximations to the alarm regions, as they are similar to N V Vilk NA
those for the previous cases. As such, the resulting closed

form alarm region is shown in Egn. 65. d oo L L
Z/ / / N (%53 i » B )X + - .
gkl > L+ \/Vigan® ™ (Py) = L} (65) j=tib ek ek

The resulting root-finding alarm regions are governed by d =L /L L
the same inequality in Eqn. 63.}; can be found by solving / / / N (x5 pix; , B, ) dX;
for f(Zxyax) > 0, where I Nl R
J+1
R Tptap — L —Zgtae — L X
Flarpap) =@ [ =) +o [ —HE_—) —p Tk Tk
VVitdk VVitak < - ) e = . € Rit!
The alarm condition for at least one exceedance/fade event ’ . - o 4 -
within an interval iSP(Ceyact|P) = P(Cegact|®o, - - - 25) > k+jlk . kg
P,, and is expanded in Eqgn. 66. Sy (i1, 2) CPiyiykC° + R i1 =1y
e CX,,C" i1 # 2
d o J71 where
P(lzx| > LID) + > P([) lokil < L, |xxg ;| > LID) > P, A o
=1 =0 Pip = A(PL-PL)(A") +PL
(66) _ i1 | PR i2—11 T i1 T
To determine the approximations to the alarm regions, we s = A [Pss (A ) - Lss} (A ) + Lss

can again use either the closed-form or root-finding methods. .
Using the closed-form approximation, we intuitively use th@"dLss = ALs A~ + AQ _ _

same logic as in previous cases. However, we have the! S a@larm region may span many dimensions, but can
added caveat of determining the alarm region correspondig® P& shown in two or three dimensions. As such, we
to the sum of several conditional probabilities on the lefifovide Figs. 5 and 6, which illustrate the qualitative nature
hand side of the inequality of Eqn. 66, unlike before. AQf both the closed-form and root-finding approximations in
such, we shall approximate this inequality by the union dV0 dimensions for sample alarm regions, as in Figs. 3 and 4.
d + 1 distinct inequalities. These inequalities will be formed‘9@in, wWe see that the root-finding approximation provides
by conditional probabilities of subevents on the left han@ Petter bound on the alarm region than the closed-form
side of the inequalities, and the same design param&ter, approxmgﬂon_. Wt_a also sh(_)w a s_ample three dimensional
on the right hand side for each inequality. It is reasonabf&rm region in Fig. 7, for illustrative purposes. The same
to make this assumption because all subevents are disjofffProximations can be used to form a hypercube, outside of
and therefore can be considered independently. The saffich integrations to compute relevant alarm statistics may be
mathematical or intuitive arguments as used for Eqns. 53 - B§rformed. _

apply to each of these inequalities as well. As such, the closed nally, for —at least one up/downcrossing event
form approximation can be represented for all asymptotédthin an interval, the alarm conditionP(Cezaci|D) =
corresponding td@y |, Vi > 0, as shown in Eqns. 67 and?(Cexact|zo, ..., ) > Py, is expanded in Eqn. 69.

68.

j—1

d
> P(() |wksil < L, |wwgi| > LID) > P, (69)
j=1 i=0

d
Aapprox = U ‘:%k—i-i\k‘ 2 L + A/ Vk+i|kq)_1(Pb) (67)

im0 To determine the approximations to the alarm regions, we
Lk, can again use either the closed-form or root-finding methods.
o%oth approximations can be represented identically for all
asymptotes corresponding . x|, Vi > 1, as shown previ-
ously in Egns. 67 and 68. However, here these approximations

Using the root-finding approximation, the same union
inequalities applies, as in Eqn. 68.

d are good only for the asymptoted > 1 as distinct from
Aapproz = U | % ki | > Ll (68) Vi > 0 with at least one exceedance/fade event within an
i=0 interval. The alarm region approximations for this subspace

However, the alarm region can now be found by the inequdt€ represented by Egns. 70 and 71, for the closed-form and
ity f(X) ls0s,,,,—0> 0. where the asymptoted,} can be root-finding methods, respectively.
found by solving for the zeros g‘f(X) = P(Cepact|D)— Py = d
d_ o j-1 U ptipnl = L+ /Vierap @ (Po) (70)

P(lzx| > LID) + Y P(() [wkssl < L, |zrss] > LID) = P i=1

T
j=1  i=0 La,

i
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Closed form approximations (at least one exceedance in 2

Alarm regions for L = 3 Alarm regions for L = 6 Alarm Region for at least one
10 15 0.9 exceedance/fade in 3 steps
0.8
10
5 P — o 0.7 20
= / > e > 0.6
'_7"_ 0 o i 0 “‘ / 05
& S & / Gl
-5 N e 0.3 &
-10 0.2
-1 -15 0.1
Yo 0 10 -0 0 10 220
Tk Tk 20
Alarm regions for L = 11 Alarm regions for L = 16 0 20
20 0.9 0
: — 20 Z = 08 :Tk+1|k -20 -20 i’k‘k
§ 0 “‘ m § 0 82 Fig. 7. Multiple exceedance alarm region in 3 dimensions
&3 ‘ | 0.4
M/ =10 | . o I
-10 L = = =/ 0.3 formor root-finding approximations based upon the derivation
-20 0.2 provided below.
o 0 20 -20 o0 20 O
Tk|k Tk d Jj—1

lim o D P(() [kl < Ly lwwgg| > LID) =
X\‘ik\ﬂ—’oo j=1 i=0
Fig. 5. Closed-form approximations for multiple exceedance alarm region
P(lak| < Llxo, . .., xk)

Root finding approximations (at least one exceedance in 2 si i)
lc(,Alarm regionsforL =3  Alarm regions for L = 6

10 0.8 P(lzg| < Llwo, ..., 2) > Py
5 - e g'; This follows from the same logic that leads up to Eqn.
% 0 o % 0 0'5 35 for the previously addressed thermal sensation complaint
& g & 04  application. As such, we may use Eqns. 55-57 to define the
-5 -—— 03 closed-form or root-finding approximations and the asymptote
-10 02  for |&yx|, previously used for the derivation of Eqn. 57 in the
_1(10 0 0 o o 0 0.1 beginning of this section. For the closed form approximation,
N Fele L -1 Buje L it is given by the same inequality, shown again in Eqn. 72.
Alarm regions for L =11  Alarm regions for L = 16 R B _
20 ’ 0 el < L—\/Viu® ™' (B) = L (72)
20
10 | /F7—— = ) 2:3 Furthermore, the root-finding approximation can again be
- ( Y ﬁlo r 06 foupd by solving for the zeros of(o”:ka) shown .below, just
0 70 o5 asin Eqn. 58 provided previously. Given a particular value of
| g J, & 04 P, the asymptote for the alarm region corresponding @
-100 \\ = -10 (s S 03 is defined byL}, where|@ | < L for f(&y) > 0.
' - -20 = ’ 02
295 0 20 -20 o 20

R R L — Ty —L — Ty,
ek e Flapp) =@ [ kb ) g (T THE) g
kik) vV Vilk VALY

Fig. 6. Root-finding approximations for multiple exceedance alarm region 1n€ combined alarm region is the intersection of Eqgns. 71
and 72, yielding Eqn. 73.

d
d
A . +
U Tl > Ly, (71) Aappros = U [|£k+i‘k| > in] ﬂ [mk‘k‘ < L;‘] (73)
i=1

i=1

For the remaining asymptote corresponding|g.|, we This alarm region is the last of the optimal regions to be
provide the same two alternatives again for either the closatiscussed. However, there may be many more that can be
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defined from within the class of level-crossing events havir
a fixed threshold, using the same techniques. This particu
event, in which at least one up/downcrossing occurs within i
interval, may also span many dimensions as in the previa fr'(t):
example. We show a sample three dimensional alarm regior
Fig. 8, for illustrative purposes. The approximations provide
for this alarm region can be used to form a rectangulariz
bound, again outside of which integrations to compute releve

alarm statistics may be performed. In two dimensions, th v(t)
event is identical to the first one covered in this section, «...
up/downcrossing event spanning an interval. The correspor&d 9. Closed-Loop Control System Block Diagram
ing relevant approximations are shown in Figs. 3 and 4.
Alarm Region for at least one the spacecraft propulsion anomaly detection and the thermal
up/downcrossing in 3 steps sensation complaint example.
-0 A. Spacecraft Propulsion System Anomaly Detection Applica-
tion
= The model used for the spacecraft propulsion system anom-
g 0 aly detection application will be briefly reviewed here. More
extensive details can be found in [9]. This model is based
-20 upon control system error, with a fixed critical threshold as
| the primary indicator of criticality. The data used for training
40 of the model is also discussed in detail in [9]. For the

20 example presented here, the model is based upon the reduced
0 dataset discussed in [9] that eliminates certain tests based
Erpalk 40 20 N upon functional categorization. There are several motivations
behind training a linear dynamic system using control system
error for the spacecraft propulsion system anomaly detection
application. One relates to the fact that the data requirements
are quite modest. The training data is univariate, he= 1,
and represents the difference between the commanded throttle
and actual throttle. In control systems terminology, this is the
For both of the examples to be used as a demonstrationtrol system errore(t), traditionally used as the input to
testbed for the theory presented in the previous section, wecontroller, as shown in Fig. 9. At the same time, we can
use variants of data-driven methods to arrive at statisticajbyovide for a richer description of the dynamics of the data.
viable models. It is possible and in some cases preferable taMe also appeal to the use of control system error against
use a model that incorporates physics and is based upon firsit checks or redlines in the design of various alarm systems.
principles. In these situations, model fidelity is of paramouisturbances that influence a control system during nominal
importance, so that simulation of the model results in @peration may cause a threshold to be exceeded. However,
realization that both quantitatively and qualitatively resemblegher non-environmental disturbances may represent subtleties
real system behavior. These models are often of use wharthe dynamics of the system being controlled. These anom-
implementing algorithms that automatically take correctivalous excursions may potentially stem from latent faults in
action, or respond appropriately to caution and warning alatime controlled system that are precursors to incipient failures,
signals. In some cases, philosophical or political drivers maand may eventually manifest themselves in a more serious
date the use of such models, when intuitive and physidalhion. As such, the control system error provides an excellent
explanations are required for the implementation of alarparameter for monitoring in the face of latent faults that may
systems. present themselves in a more nuanced manner. This measure
However, developing such models often requires extensivey serve as a more advanced technique to complement
labor and expert domain knowledge. Invoking the data-drivetigorithms that use direct sensor measurement which have
approach ameliorates this requirement. Furthermore, datasre physically intuitive interpretations when applying the
driven models are sufficient for our purposes here becadssit check paradigm.
statistical characterization is a reasonable first step in applicaThere are two primary control systems that operate in
tion of alarm systems based upon control system error. Maepport of the Space Shuttle Main Engine (SSME), the
extensive models may be required when developing automasgécecraft propulsion system which is the driver for all of
response strategies as in [3]. As such, we present models baked models developed in this section. One is the throttle
upon the data-driven approach at different stages for batbntrol system, which regulates the main combustion chamber

Fig. 8. Multiple up/downcrossing alarm region in 3 dimensions

V. EXAMPLES



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-XX, NO. X, XXX 2007 17

pressure. The other major control system that functionaly We can estimate the natural frequency by making an

supports the SSME is the mixture ratio control system. Thassumption ok (¢) to be represented by a zero-mean stationary

system maintains the oxidizer/fuel mixture ratio at a desirgglaussian random process. In this case, we can use Rice’s

level. We use the throttle control system error due to tHermula for the level-upcrossing rate [22], [23], as shown in

commanded throttle qualitatively being the apparent driver fegn. 79, to compute the natural frequency, = o This

so many other sensor readings. formula can be derived very easily [24], and is used in similar
In Fig. 9, the closed-loop control system representatictudies [15], [25], [3].

illustrates that the actual throttle level(t), is subtracted

from the desired or commanded throttle level), to obtain 0 1

control system errorg(t) = r(t) — x(t). The block labelled A, = { _w? 9 } (76)
C represents the controller, which we can nominally assume “n Cwn

to be a very simple PI (proportional-integral) controller. The B, = { 02 ] (77)
PI controller takes the control system error and computes the Wn,

appropriate actuation to deliver to the plant, labelled as block C. = [ 1 0 ] (78)
P. The plant may be subject to input noise(t), which is o0& i(kzea)? 79
introduced directly into the state dynamics. Finally, as the Voo T zmyme o (79)

feedback loop is closed, measurement noisg), may be
additively introduced to the output of the plant to fornx),
used by the control system.

By using L = 0 as a candidate level, we may count the
number of zero-upcrossings of the sample data, and compute

There are several transfer functions that can be formed frdfff 2"¢-order statisticsyi,, and o, in order to use Rice’s
the closed-loop state dynamics. The one that we are mimula to f'”qﬁ’n' In casey, = L = 0, we simply need;’,
interested in from the machine learning standpoirif &, ., PCeCauses, = o* = 2mv;. _ _ _
or the closed loop dynamics that represent the transfer functiorf\ter discretization, Eqns. 74-75 fit the modeling paradigm
from input noise to error. Because the data available to [gPresented by our machine learning problem represented in
for training is the control system errog(t) = r(t) — x(t), Fig. 10. The moc_jgllng parac_hgm in this figure is expressed
we can reformulate the dynamics of the closed-loop feedbaghin the probabilistic graphical model framework. Here we
control system into a standard representation that can ¥ See that the model to be leamned is a dynamic system.
treated as an unsupervised problem in machine learning (i.E€ observed data are represented by shaded nodes and the
using output observations only). This is performed by |oose}910bser\{ed state repres.ented by hidden gnshaded nodes. Both
approximating the measured control system error using tAE continuous (Gaussian) random variables, the latter of
transfer functionT'F,,_.. Further discussion of the nuanced/hich need to be inferred. _ .
of this point are provided in [9]. However, everything within During the learning procedure for the linear dynamic sys-
the dotted line can be reformulated to represent the closéd, the EM algorithm is used to find the parameters shown
loop dynamics, where the desired outpute(g). Ultimately, N Fig. 10. Details of this procgdure_are provided in Zo_ub_m
we would like to be able to express these dynamics as sho@#fl Hinton [26] as well as Digalakis et al. [27], and it is
in Eqns. 74-75 below. In Eqns. 74-75(t) is used as a generic MPlemented using Murphy’s BNT (Bayes’ Net Toolbox) [28].
placeholder for the transfer function outputt), rather than Initialization of the parameters shown &sn Fig. 10 is also

for (t) shown in Fig. 9. This allows for us to match thegPerformed using some basic heuristics. By initializig= 1
notation used in Section IV. and clampingw,, during training, we can back out the learned

value of the damping ratig. Initial values forA. and B,,
can be derived as a function ¢fandw,, C.=[ 1 0 ]is
q(t) = Acq(t) +Byw(t) (74) fixed during learning, and? is initialized by making a guess
z(t) = Ceq(t)+v(t) (75) at the SNR (signal to noise ratio), so that= 3¢ (o2 can
be computed directly from the data).
Using these assumptions, and by use of steady-state
w(t) ~ N(0,Q.) continuous-time Lyapunov equations for Eqns. 74 and 75 (cf.
o) ~ N(O,R.) PL from Fig. 10), we can find an adequate initialization
e for ., as is performed in [24], [3]. We then discretize
All matrices in the equation above are also subscripted wigl parameters using the sampling interl = 0.04 sec
“¢” or “w” in order to disambiguate between the continuougebtained from the data in [9]) , and the procedure outlined
time dynamics and the discretized dynamics yet to be prig-[3], allowing us to form Eqns. 80 - 81, which support the
sented, which mimic those used in Section IV. Eqns. 74-%@riables shown in Fig. 10. Furthermore, they also support all
need to be discretized in order to fit the digital implementatiosf the theory presented in Sec. IV, beginning with Eqgn. 1,
of the algorithm. However, prior to discretization we camvhich are identical to Eqns. 80 - 81.
generate statistics from available data that map to parameters
in controllable canonical form. The controllable canonical
form shown in Eqns. 76-78 includes two intuitive canonical dk+1 = Aqp+wg (80)
parameters: the natural frequency,, and the damping ratio, Tk Cq;, + vk (81)

again, where
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“(bP
States
C,R
Observations
Fig. 10. Linear Dynamic System
where unseen by the model which is derived from empirically-based
NG training data. Some examples of data-driven models that apply
WE ™ 0.Q) this more formal procedure are as follows: [29], [30], [31], [9].
Uk N(0, R) The latter reference uses the same model derived here,
A = AT where a more formal experimental treatment is provided. We
B — (eAcTs _ I)A—lB don't use the same formal procedure in this article, because
c - C ¢ the main point is to introduce an alternative alarm design
- RC technique and to compare it to others based upon its theoretical
R = ?‘3 rather than its experimental merits. One of the theoretical

merits lies in the fact that we can design an alarm system

Ts . ..

Q - / AR QIBTeAZAdA based upon the model parameters derived from the training
0 et data without having to form a ROC curve empirically based

Throughout learning, we attempt to retain the controllablgPon examples of failures.
canonical structure in order to allow for determination of the
learned value for(. Furthermore, it allows for an intuitive B. Thermal Sensation Complaint Application
interpretation of the model's parameters and resulting realiza-the second example is based upon a similar state-space

tions. This is easily performed by the allowance for enforcgyogel which can be used for complaint prediction in thermal
ment of arbitrary constraints in Murphy’s BNT [28], and slightomgort applications. Recall that this model involves a random
modification of the appropriate open-source routines. Doing §geshold, and the dynamics are quite different than in the
introduces sub-optimality into the learning procedure, whigheyious example. Here, the hot complaint level is arbitrarily
means that the learning curve will not necessarily increaggosen as the example of interest to prevent redundancy. It
monotonically. However, a reasonable sub-optimal local mifs 5ssumed that distinct hot and cold optimal alarm systems
imum will be found that best represents the parameter sp3ge the two processes can be designed independently. The
with enforcement of the controllable canonical form constrairgtate_space systems for the hot critical level as well as the
In the results section we will perform a comparative analysigjiding temperature process of interest can easily be para-
of the alarm systems discussed thus far: redline, predictive, 8fgterized. The subscripts of the system matrices for both hot
optimal, for each of the level-crossing events introduced Bbmplaint and building levels areh™ and “b", respectively,
Sec. IV. The manner in which the analysis will be performeg, gisambiguate between the continuous time and discretized

is via the ROC curve. For each I.evel-c.rossin-g event, fopgnresentations yet to be presented. We first define the state-
different prediction windows will be investigated:= 1 (0.04  gnace equation for the hot complaint level in continuous time:
sec),d = 2 (0.08 sec),d = 5 (0.2 sec), andi = 10 (0.4

sec), to allow for the study of a variety of cases for potential

early detection. The critical level,, is chosen for all cases z(t) = Apz(t) + Bpn(t) (82)

such thatp = 0.001, by finding an equivalenf.q;, using y(t) = Cnzt)

Eqgn. 49. It is important to note that for certain level-crossing - . ) o

events, the computational burden of the alarm system desigr "€ Puilding temperature process is also defined first in

increases with the number of steps in the prediction windofPntinuous time, and both have the same canonical parame-
The data-driven model derived in this section representd’ation as in the previous example shown in Egns. 76-78.

more advanced statistical method than will be presented for

the thermal sensation complaint applipa_tion in the next _section. a(t) = Auq(t) + Byr(t) + Buw(?) (83)

We've demonstrated here that a training procedure involves #(t) = Cyalt)+o(t)

learning via use of the EM algorithm, etc. Typically, machine

learning/data mining methods require a formal experimentAll of these systems must be discretized for the discrete time

to be conducted such that a data set is partitioned irdoalysis in Sec. IV to apply. This is done by performing a zero-

mutually exclusive training and validation hold out subsetsrder hold on all of the above systems as shown in [24]. As

The validation hold out set serves to test the model on datach, a sampling interval},, must also be chosen. As a rule
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of thumb, we choose a discrete time sampling interval baseddetail. The primary reason for computing the measurement
upon a fraction of the shortest time constant of the dynaminsise is for use in Kalman filtering and prediction, which
of all relevant processes. More details of the selection of tiee an implementation prerequisite of the type of optimal
sampling interval are available in [3]. However, the valud'pf alarm system introduced in Sec. IV. The formulae relating
is 20 min, which certainly provides evidence that the dynamidie remaining discretized, discrete-time parameters to their
here are quite different than in the previous example. Agaiopntinuous-time counterparts are shown in Eqns. 84-87. The
apriori statistics for the zero-mean input and measuremestate-space parameters are discretized by performing a zero-
noise processesy(t), v(t) and n(t) need to be quantified. order hold of the two processes. The input noise discretization
All are scalar processes, such that), v(t),n(t) € R. Using results are also provided for the building temperature process,
Gaussian assumptions, we have the following: using a documented procedure [33], [34], [35], [36]. The
input noise variance for the hot complaint level process was
not discretized, but found by using discrete-time Lyapunov

w(t) ~ N(0,Qu) analysis of the discretized state-space system. A documented
v(t) ~ N(0,R) method [24] shows details on how to derive the discrete-time
n(t) ~ N(ur,,Qn) input noise based on a continuous and discrete time Lyapunov

analysis of the statistics for these processes.

Note thatr(t) € R is a scalar fixed control input, which in  pjscretization of state-space equations for both processes:
our application acts as the thermostat setpoint. Note also that

R is only applicable to the building temperature process, as Zry1 = Apazi + Brans (84)
it is the measured process, an¢) is only applicable to the yr = Chazp (85)
cqmplalnt process, where thgre is no defmeq control mpgt. Qeit = Adgs+Bry+wy (86)
Since we assume that modeling the complaint levels requires

no direct control input term, the mean of the input noise o = Cap+ok (87)
driving these processes is taken as the mean of the out

Also, no measurement noise needs to be modeled for the

complaint levels because there are no measurements of these Ay = AT

unobserved processes. For the building process, typi_cglly the Bhy = (AT — I)Angh

output measurements oft) come from a DDC (Direct Digital C _C

Control) system associated with more sophisticated commer- hd = *h

cial building systems. Otherwise, these types of measurements A = M

often come from micro-dataloggers that record the temperature B = (T — I)A;le

for a preset period of time. C = G

TABLE | and
TABLE OF BUILDING AND COMPLAINT TEMPERATURE STATISTICS

ng ~ N(ur,Qn,)

_ T
M or o w ¢ Qng = E[nkznk }
C,PLCY
Hot | 91°F | 5.06°F | 114°F | ggeasrad | 1 47
hr ' hr DL A Pss
whereP,, = —*2
Qn,
o o ra _ DL T T
Cold | 5o.agep | 614°F | 4085E | goop3zed | 1 = AJP A, +By,B,,
also:
Bldg TA°F 3.57°F 0.91% 0.2682% 1
T,
Table | provides the relevant parameters and respective Q = / eAAB“,QwBEeAT*d)\
values for all three processes in continuous time. With the 0 )
exception of the last two columns, these parameters come whereQ,, = ‘fTB
from Federspiel's work [25]. The fourth column's) values Y CP.CT
were derived from the first three using documented methods andp. 2 P.
[15], [25], [24]. The fifth column’s () values were selected T Qu
heuristically for simulation/analysis ease [24], [32]. AP, + P AT = B, B’

The measurement noise can be computed by a procedure
discussed in [3], where relevant assumptions are also discusseahd:
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Furthermore, an error analysis for these approximations as well
as comments on accuracy and computational design time are
v ~ N(OE) provided. Unlike the previous application, the alarm system

R = E[Ukvg ] metrics used are Type Il error (missed detection) and false

: : larm probabilities in lieu of the ROC curve.
Equations 84-87 relate back to Eqn. 1 in support of theof’&/‘sl ; . :
presented in Sec. IV. This is not as apparent as in theThe extent of the data-driven method as applied to this

previous example, where there was a more straightforwa%ample lies in generation of a model derived from statistics.

application of the theory developed. In this case, the Ievé}- is still possible to characterize the building temperature

crossing problem can be reformulated because two proces%ré?ess through the same control loop as shown in Fig. 9

interact, the stochastic critical level associated with hot corf® for the previous example, although there is a different
plaints, and the building temperature process. In this case f sfer fuqctlon of interesg'f;. .However, the p_arameters'
Kalman filtering and prediction would only be performed offhown in Fig. 10 are not Iearned' via the EM algorlthm fpr this
the building temperature process. Reformulation of the |evg>_<ample. Rather, the model de”"?d p“r?'y from statistics that
crossing problem entails transformation of the problem in%ould_ typically serve as_the starting point for_such an algo-
one that fits the paradigm of a fixed, static threshold. In doir} hm is used. However, if we apply the canonical constraints

so we simply take the difference between the stochastic criti for the previous example, the resulting dis_trit?qtion based
level, y, and the controlled processy, implying that the on the learned parameters may not change significantly from

critical level is given byZ = 0, due to upcrossings af — 0 the initial parameters. As such, using the model derived from
by 2 — yi ’ statistics is a feasible alternative for this application.

Furthermore, the conditional expectations necessary for VI, RESULTS
arriving at the Kalman filtering and prediction formulae require ' ) i )
a slight recasting. This will not result in a large deviation from All Of the results presented in this section are only for the
the alarm theory previously presented, but e, term in spacecraft propulsion anomaly detection example. As stated

Eqn. 86 needs to be accounted for and propagated thrmpé[a]viously, detailed discussion of the results for the thermal
all of the equations in Sec. IV. In addition, the level-crossingensation complaint example can be found in [3]. Chapter 3 of

problem can be reformulated even further due to the fact tHal details the fidelity of various approximations to the exact
the conditional expectation of the stochastic critical leygl, ©Ptimal alarm region, and Chapter 7 covers the implementation
conditioned on the observations is given as shown in Eqif¥, the resulting alarm systems. In general it was found that
88-90. This is due to the assumption that building tempdfProved approximations to the exact alarm region were
atures are uncorrelated with, or independent of the hot aR@SSiPIe at the expense of an increased computational burden.
cold complaint levels. This independence assumption made jn' '€re aré no comparisons to other types of alarm systems in

Federspiel's study [14], is valid if the coping behaviors o] as will be presented here. As such, we present t'he results
building occupants do not vary with building temperature. A" all alarm system types and each of the level-crossing events

such, the reformulation of the problem from the alarm theoGPVered in Sec. IV. ROC curves provide the basis for Figs.

standpoint as presented in Sec. IV is for the processto 1-15 presented in this section. The formulae for true and

interact via upcrossing with the levél = false positive rates required to form the ROC curves were
h"

presented in Sec. IV as Eqns. 47-48. We know that as long
as the following three probability computations are performed:
?)k+d|k = E[yk-‘rd"rov s 7Ik] (88) P(Cem(mt); P(Aapprom)a andp(cema,ct7 Aapprom)n any relevant
= Geyik,Vi =0 (89) alarm system metri_c can be deri\_/ed from them, including the
. (90) true and false positive rates required to fo_r.m the ROC curves.
" The formulae for each of these probabilities were provided
Again, our problem is to design an optimal alarm systein detail for all alarm system types and level-crossing events
that predicts at least one operating complaint, or at leastinterest, both in Sec. IV and in the appendices. As such,
one arrival and operating complaint. For the former case, wemputing integrals of the form necessary for design and
use al2-step ahead prediction window, en = 12. This comparison of the alarm systems require multivariate prob-
corresponds to a-hour period in which operating complaintsability computations. These computations are performed by
can occur either during the morning or afternoon period of thesing Genz's algorithm [17], based upon a Monte Carlo-
day. For the latter case, we use the same- 12 step ahead style integration. Due to the Monte Carlo nature of the
prediction window, andl = 3 as the number of steps prior tocomputations, a fixed number of random samples must be
the start of the day. In this-hour period prior to the beginning set. For the results presented below, the number of random
of the day, we want to predict both arrival complaints ansamples for each integration performed varied betwagh
operating complaints in the ensuidghour period. and36000 sample points, depending on the resolution required
All results and subsequent discussion for the application fafr sufficient smoothness to be attained.
the theory presented in Sec. IV to this example are providedThere is an important property of the ROC curve to consider
in thorough detail in [3], in lieu of presentation in this articlewhen evaluating the results presented in the section from an
In [3], a comparative analysis of the differing approximationabsolute standpoint. The diagonal line corresponding to equiv-
used for the level crossing events defined above is providedent true and false positives values represents the boundary

>
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above which a system performs better than randomly guessifgUp/downcrossing event spanning an interval

if the level-crossing event occurs. From a relative standpoint,By observing the ROC curves in Fig. 11, we can immedi-

this property is less important because the objective is 19,y giscern that for the two smallest prediction windows=(

perform a qualitative comparison among different types gf ;_ o) poth optimal alarm system approximations and the

alarm systems. predictive alarm system perform better than the redline alarm
Many of the results shown in Figs. 11-15 actually liesystem, and their performance appears qualitatively identical

very close to, if not along the random guessing line. Thishey are superimposed). As the prediction window increases,

relates to the model fidelity (it's capability of explaining theall alarm systems appear to have identical performance, which

data used to train it), the chosen threshadld,.;,, and the lie along the random guessing line.

prediction window size. For extreme values of the threshold

that correspond t@ = 0.001, and for prediction windows Predicted Event: End of interval up/downcrossing
Fhat span a large qu_mber qf time steps (de.:_ 1Q), there d=1step=0.04 sec d =2 steps= 0.08 sec
is naturally more difficultly in accurately predicting events. 1, 1,
Furthermore, the ROC curve is only as good as the given & &
model parameters, since the ROC statistics are a function of % %
these model parameters, which are implicitly a function of the = 2
data. Therefore, a different training data set may have resulted § 05 § 05
in a ROC curve that has a different shape that would be more ¢ _ﬁﬂgfve 3
robust to increases in the size of the prediction window. E —8&:?: Egg =
For the curves presented in Figs. 11-15 below, the results % 05 1 % 05 1
of the optimal ROC curve true and false positive rates were False Positive Rate Fase Positive Rate
obtained via both approximations studied. As presented in Sec. d=5seps= 0.2 sec d =10 steps = 0.4 sec
IV, the two optimal alarm region approximations studied were 1 1
the “closed-form” and the “root-finding” approximations. Both ¢ 8
approximations yielded very similar and in some cases nearly § 14
indistinguishable results for all of the cases presented below. £ <
However, both approximations are displayed in Figs. 11-15 & 05 7 0.5
below, with “CF” corresponding to “closed-form,” and “RF” c §
corresponding to “root-finding” in the legend. § E
. . . . % 0.5 1 % 05 1
Predicted Event: Up/downcrossing spanning an interval False Positive Rate False Positive Rate
1Olzlste|0=0-04sec d = 2 steps = 0.08 sec
1

Fig. 12. ROC curve for end of interval up/downcrossing event

True Positive Rate
o
(6]

True Positive Rate
o
[6)]

—Redline . .
Predictive B. End of interval up/downcrossing event
—Optimal (CF) By observing the ROC curves in Fig. 12, we can tell that
0 _~~Optimal (RF) 0 for the smallest prediction windowd(= 1), both optimal

0 0.5 1 0 0.5 1 alarm system approximations and the predictive alarm sys-

False Positive Rate False Positive Rate tem per¥orm bet?gr than the redline alarpm system, and th);ir
d=5steps=0.2seC d=10steps = 0.4 sec performance again appears qualitatively identical. Not much
else can be concluded for the remaining prediction windows
because they yield performance that lies along the random
guessing line. This can mainly be attributed to the fact that
05 the up/downcrossing event occurs at the end of the prediction
window interval, making it a difficult event to predict, and
thus a poor candidate for an alarm system.

0.5

True Positive Rate
True Positive Rate

GO 1 Co 5 1 C. End of interval exceedance/fade event

05 05
False Positive Rate False Positive Rate In Fig. 13 we can qualitatively observe that the performance

of all alarm systems is nearly identical for all prediction
Fig. 11. ROC curve for up/downcrossing event spanning an interval windows to that of Fig. 11, for the up/downcrossing event

spanning an interval. This may indicate that these two events

are equally viable candidates for developing alarm systems.
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Predicted Event: Exceedance approximation to the optimal alarm system outperforms the
d=1step=0.04 sec d=2steps=0.08 sec “closed-form” approximation and the predictive alarm system
® 1 © 1 in a qualitative sense, for all values &, In fact, although
§ § it is difficult to discern by observing the qualitative nature
o © of thg plot, the “closed-form” approxi.mgtion outperforms the
205 — Redire =05 predictive alarm system only for a limited set of values for
§ Predictive % B . . .
3 —optima (CP)|| S Most interestingly, none of the alarm systems consistently
= ---optima (RF)|| F outperforms the redline alarm system for all valuesaf
00 05 1 00 05 1 However, each of these alarm systems does outperform the
False Positive Rate False Positive Rate redline alarm system over various rangesRfvalues. The
d=5steps = 0.2 sec d =10 steps = 0.4 sec range of \{alues is largest for the “root-finding” appro_ximation
1 1 to the optimal alarm system, followed by the predictive alarm
o g system, and is least for the “closed-form” approximation
§ % to the optimal alarm system. As the prediction window
g > size increases, it becomes clear the both “closed-form” and
Z05 7 0.5 “root-finding” approximations to the optimal alarm system
o % outperform the predictive alarm system, whose ROC curve
3 E approaches the random guess line cyclicallydamcreases.
= However, neither still consistently outperforms the redline
OO 05 1 Co 05 1 alarm system for all values aP, for these larger prediction
False Positive Rate False Positive Rate windows. It therefore may be of use to study this event
further, and to use the area under the ROC curve to obtain
Fig. 13. ROC curve for end of interval exceedance/fade event a comparison that is independent of tRevalue.

) ) ) Predicted Event: At least one up/downcrossing in an interval
Predicted Event: At least one exceedance/fade in an interval

d=1step=0.04 sec d =2 steps=0.08 sec
d=1step=0.04 sec d =2 steps=0.08 sec 1 1
1 1 o o
) ) Jol kol
s g @ x
b4 S g 2
2 2 7 0.5 —Redline 7 0.5
g 05/ |—Redine 305 o Predictive a
§ Pre(;hctlve % g — Optimal (CF) GEJ
S —optimal (CR) 2 = —-optimd RR)| ©
= o ---Optimal (RF) 0 GO 05 1 5 05 1
0 0.5 1 0 0.5 1 False Positive Rate False Positive Rate
False Positive Rate False Positive Rate d=5seps= 02 sec d =10 steps = 0.4 sec
d=5steps=0.2 sec d=10steps= 0.4 sec 1 1
1 1 ) ()
@ @ j$) §
T B a *
5 S 2 =
2 2 %05 % 05
‘7 0.5 7 0.5 £ o
3 5
= =
(= (=
0
) 0 % 05 1 0 05 1
0 0.5 1 0 0.5 1 False Positive Rate False Positive Rate
False Positive Rate False Positive Rate

Fig. 15. ROC curve for at least one up/downcrossing event within an interval
Fig. 14. ROC curve for at least one exceedance/fade event within an interval

. ) E. At least one up/downcrossing event within an interval
D. At least one exceedance/fade event within an interval . -
Finally, in Fig. 15 we can observe that the performance of

Fig. 14 exhibits the first characteristics of a discernableth approximations to the optimal alarm system is always
distinction between the two different approximations to thieetter than both the redline and predictive alarm system for
optimal alarm system, specifically for the smallest predi@l prediction windows. This is most evident for all but the
tion window (@ = 1). We can tell that the “root-finding” largest prediction window ofi=10. Curiously, again as the
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prediction window increases, the predictive alarm system ROCAlternatively, we could have used the model parameters
curve approaches the random guess line in a cyclical manneing the 2 distribution as presented in Sec. IV for the
as distinct from all other alarm systems which approach tlamalysis involving a single level. However, this technique will
random guess line asymptotically dsncreases. generate ROC curve statistics that belong to two complemen-
tary hypotheses. This paradigm differs from the one used to
VII. DiscussiON CONCLUSIONS & FUTURE RESEARCH  generate ROC curve statistics presented throughout this paper.
It is not easy to draw a general conclusion from the resul¥e based our alarm statistics upon distinct definitions of a
presented in the previous section. Comparatively, in consiclitical event as the hypothesis, and an independently designed
eration of all alarm systems, determining the best performaiarm system. As such, ROC analysis cannot be performed
depends on the type of level-crossing event. However in maiting our paradigm in the case of a single redline level.
cases, the optimal alarm system approximations are clearly tthewever, in the other paradigm, alarm systems merge the
better performers, with the event that characterizes at least dmectionality of limit checking and the use of an alarm design
exceedance/fade event within an interval as the exception.p@rameter into a test of two complementary hypotheses.
this case, the redline alarm system outperforms the others ovedsing this method, it is not possible to decouple indepen-
a fixed range of threshold values. Even so, we have gaindent alarm design from the critical event, which provides a
invaluable insight into which events are difficult to predictmeasure of functional distinction. This method is also the one
and thus poor candidates for alarm systems, and which evemgst commonly found in the literature, i.e., [20], [10], [11].
are prime candidates for further study. Arguably, the critical event should be based upon the physics
As mentioned previously, the results are also affected by the failure, and the alarm design parameter should be used
extreme values of the chosen threshold, and for predictitm predict it. The distinction between these two paradigms
windows that span a large number of time steps. For anoth&rone of the most discernable differences in the theoretical
application with a different prediction window, critical threshtechniques used here and in other literature, [1], [2], [3], [4],
old, and dynamics, the results of the optimal alarm systel®l, [6].
may yield better performance than the redline alarm system.Subject to certain constraints, design of the alarm system
It is also possible a better approximation to the optimal alaroan proceed without the need to observe actual examples of
region might also close the optimality gap in this particuldmilures, and there is no need to estimate the alarm system
instance. Furthermore, the use of Kalman filtering allows fanetrics empirically using either paradigm. This obviates the
estimation and prediction of states that would otherwise Ieed to rely upon having actual available examples of failures
unobserved or immeasurable using the redline alarm systefar alarm system design to generate the ROC curve. That is
For the spacecraft propulsion anomaly detection examplecause they are based on the model and design parameters.
two distinct levels were used for redline analysis: one fdiowever, the hypothesis-based level-crossing event must suf-
limit checking, and one for alarm design. This technique wdigiently characterize an actual physical failure for the model-
used in lieu of a single level having both functions for thbased analysis to be of great benefit.
redline analysis because the ROC statistics can be expressedl of the alarm theory presented in this paper has also been
as a function of the model parameters when using two levessipported by the thermal sensation complaint application. The
This is not always possible for analysis in the case of rasulting details are presented in [3]. We present both examples
single level, specifically in regards to the technique used & means to motivate the use of such algorithmic novelty for
generate the ROC curve statistics. Furthermore, two levelther potential applications that require health management
are often used in practice for the design of fault detectiaw fault detection. The basis of the theory itself is quite
algorithms that involve limit-based abort decisions. A “yellowpedantic, and can often be found in pedagogical introductions
line” limit check is often used as a precursor caution artd modern control theory. It can therefore naturally be extended
warning threshold to the “redline” abort threshold. The formdp more realistic scenarios that include non-linear dynamic
can be used as an alarm system design parameter, whstgems, non-Gaussian distributions, and potentially the use of
the latter may serve as a hard limit determined apriori viextended/unscented Kalman filtering, and/or particle filtering.
extensive experimental validation. In addition, adaptive model updates may be considered, as is
When there are insufficient examples of failures, the RO@ work presented by Antunes et al. [8].
curve statistics (the true and false positive rates) can beNothing yet has been mentioned about the actual alarm
estimated empirically as limiting fractions, using only a singldesign procedure or results from its implementation, which
redline level. This is akin to the “counting” method discussechin be performed by selecting the optimal border probability,
in the introduction, and as such it might also be possiblg,. This border probability serves as a free parameter, and
to simulate failures with the model in lieu of using actuahence as the primary design metric. The steps required for
observations of failures. As such, this method could have be#esign of an alarm system have been covered in previous
used to demonstrate a comparative analysis of a redline alamark [1], [2]. However, they tend to be based either on purely
system, based upon a single level. This “Monte-Carlo” styleeuristic trial-and-error approaches, or cost functions. For cost
technique is computationally intensive, and is still based upfunctions, sometimes it is easy to assign particular costs to
the model-generated failures as opposed to actual observatievents that penalize the probability of alarms, false alarms, and
of failures. A similar empirical approach detailed in [20] camissed detections, etc. Assigning these costs requires heuristic
be used to form the ROC curve. knowledge of the risk-reward tradeoff in terms of relevant
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alarm system metrics. This is cause for further study, in whigh End of interval up/downcrossing event

these challenging design and implementation issues will be . )
covered in earnest. In future work we can look at creative "€ Probability,P(Cezact; Aapprox ), for this event is shown
ways to select the value d?, for the optimal alarm system " EQn. I.2.

given the appropriate criteria and investigating different cost ©(Cezact; Aapproz) =

functions.

An issue which has not been addressed in detail for the P(|lzg| > LA7 |Zkval < L, |Thrar1] > L)
spacecraft propulsion anomaly detection application is the oo L
quantification of the approximations used. In [3], the error /L / N(X s Bix) dX -

introduced in such approximations was discussed in detail I oo

for the thermal sensation complaint application. We would / / / N (x5 pixe, 2xc) dX + . ...

like to be able to determine: (1) the level of sub-optimality LJLa

introduced by making these approximations for the spacecraft L N . 30) d

propulsion anomaly detection application, and (2) if they /L /L/Oo (% 1 Boc) X+

can be improved. Such issues may relate to why we found L L L

an improbable exception in our results indicating superior / /

performance of the redline alarm system. It is known that

better approximations to the two-dimensional alarm regions

are possible, documented in Chap. 4 of [3]. Extensions to these X =

same sorts of approximations to alarm regions that “shrink

wrap” the exact alarm region under certain conditions are

cause for further investigation for alarm regions in multiple

dimensions. C. End of interval exceedance/fade event
The basic engineering approximations introduced in this . .

article addresse?:l the mgamppobjectlve of demonstrating th The probability.P(Cexact; Aapprox). fOr this event is shown

ability to initiate an alarm with as large a prediction window Eqn. 1.3.

as possible in advance of critical events. Our presentation herd” (Cezacts Aapprox) =

acts as a necessary precursor to the computationally efficient

design and implementation of optimal alarm systems, as well { P(lzg| > max(L,La)) d=0 (1.3)

as improvements to these approximations to be presented in P(lzk| > La, |zg+al > L) d>0 '

sequel articles. Furthermore, the theoretical novelty of this

paper has been demonstrated, in an aim to participate in the

Kalman filter-based fault detection literature discussion from a

different theoretical angle. In doing so, we hope to have moreand P(|xg| > L4, |2x+q| > L) =

precisely closed the gap between the use of Kalman prediction

techniques and optimal alarm systems.

N X s Hx s x) dx (|2)

_ __max(L,La)
where P(|zx| > max(L, L)) = 2® ( \/m)

oo L
/ N(X; pix, ) dx + ...
L JLa

APPENDIXI Nx: Sy g
REDLINE ALARM SYSTEM COMPUTATIONS FOR o Ji, (3 foc, i) dx A
P(CemactyAapproa:) e} —La
A. Up/downcrossing event spanning an interval / N (%3 pie, Bx) i+
s . . —L p—Ly
. 'II'EP;en.plr.olk.Jablllty,P(Cemct, Aqppros ), for this event is shown / N(x: i, ) dx
P Cezac 7Aa rox) —
( t pproz) < = { Ty } c R?
0 La>1L Thtd
P(LA < TR < L,\a:k+d| > L) + ...
P(—L<£k<—LA,‘l‘k+d|>L) LA<L L .
0 IS D. At least one exceedance/fade event within an interval
I fLL N(X; pixe, ) dX + ... The probability,P(Cepact, Aapproz ), fOr this event is shown
= o N5 S) dx+ ... p, < p (1) N Ean 14
S ST N (6 i ) dx+ P(Ceaact; Aappros) =
—L —La )
f,oo f,L N(Xa.uvaX) dx P(‘zk| > maX(L LA)) Lai<L
. - [ Ty ]ERQ >4 P+ Py (1.4)
Thtd P(|ag| > max(L, La)) Ly>1L
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where
j—1
P;; = P(La<uz, <L, ﬂ |Thti| < L, |wp5] > L)
co L L L
= / / / N (x5 i, Bx;) dxj +
L J-rL —LJLaA
L L L L
/ / / N(xj;uxj,Exj) dx;
—s JoL —LJra
j—1
P, = P(=L<ap<—La, () syl < L|zwsg| > L)
%) L L —z:
/ / / N (%5 pix; > D) dxj +
L J-rL —LJ-L
L L L ,—La
/ / / N(Xj;/"l’xj72xj) dxj
—s JoL —LJ-1L
Tk
X; = S Rj+1
Thotj

E. At least one up/downcrossing event within an interval

Finally, the probability,P(Cegzact, Aappros ), fOr this event

is shown in Egn. 1.5, with identical definitions ﬁjJ,ng, and
x; as in the previous case.

d _
S Pf+P; La<L

1.5
0 La>1L ( )

P(Cea;acta Aapprow) = {

APPENDIXII
PREDICTIVE ALARM SYSTEM COMPUTATIONS FOR

P(Cear:act7Aapp7'01')
A. Up/downcrossing event spanning an interval

We begin with the probabilityP (Cezact, Aapproz). fOr this
event, shown in Egn. II.1.

P(Cemacta Aapprom) =

P(lzk| < L, |2kval > L, |Zxyak| > La)

/LA//NXMX’ x) dx + ..
/—:A/L /_LN(X?MXaEx) dx + ...
/:/L/LN(X?NXvEx)dXJr...
/LA/ /qux, x) dx (I1.1)

Crq
X = xk+d x=| Cugq | € R3
Trydlk Cuq

Y, (i1,12) =

EXj(ilai2) = { CAd(PSLS _

25

CP,C" +R 1<ii =iy <2
CAY(PL — PR )(A)TCT iy =iy =3
CPL (AHTCT 1<ip#ip <2
CAd(PgJS - Pﬁ)CT Zl 7& ZQ Zl V ZQ =3

B. End of interval up/downcrossing event

The probability,P(Cezact, Aapproz ), fOr this event is shown

in Egn. 11.2.

P(Cefcacta Aapprom) =

= P(lzptd| < L, [wptar1| > L |Zkrar1ip] > La)

/LA/ / N (x5 pixe, Bc) dx 4 ..

/:A/L [LN(X;umEx) dx+ ...

/LOO /OOL /LL N(x; pix, Ex) dx + ...

/—:A /_: /_LL N (3 pix, Bx) dx (11.2)

Tk+d Crq
X = Lk+d+1 px = | Cpuq | € R?
Thtdr1)k Cuq
EXj (ila ZQ) =
CPLCT +R 1<ig=ip <2
CA™!(PL —PE) (At TCT i1 =1iy =3
CXSSCT 1 < il 7é 7;2 < 2
CAYPL —PEYAMYHTCT iy £y iy Vig =3
X,s = APLATHT L L, — AL (ADT

L, = AL, AT + AQ

C. End of interval exceedance/fade event

The probability,P(Ceyact, Aapproz ). fOr this event is shown
in Eqn. I1.3.

P(Cewacta Aapprox) =

P(|zksal > L, [Epiqi] > La)

/ / N (X5 pixey ) dX + ..
La
La
/ / N (x5 pixe, Bxc) dx + ...
e
/ / N(x; pix, Bxc) dx + ...
LfLAfoo_L
/ / N(x; pix, Xx) dx (1.3)

T
x = N k+d c R2
Tk+d|k

i =iy =1
PRYANTCT  ow.

CPLCT +R
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D. At least one exceedance/fade event within an interval

The probability,P(Ceyact, Aappros ). fOr this event is shown
in Egn. 11.4.

P(Cemacta Aapprox) =
d
P(jzk| > L, [@rranl > La) + > P, (I1.4)
j=1

where P(|xy| > L, |Tpqqk| > La) =

/ / N(x; px, Xx) dx + . ..
LaJL

—La [e%s)

/ /N(x;ux,Ex)der...
/ / N (X5 pies ) dxX + ...
LALA

/. / N (3 s S dix

X = { ] € R?
$k+d|k
CPLCT +R ip =i =1
Yy, (i1,42) = { CAYPL —PEYANHTCT i) =iy =2
C(PL —PE)(AHTCT i1 # 1o
and
j—1
P., = P([)l|okril <L |whssl > Lidgyqn > La)
1=0
0o 00 L L
— / / / / ./\/(xj;,uxj,ij)dxj—F
La JL — —L
—L L
/ / / / N (x5 pse; » Bx;) dxj +
La
La
[ [ [ s
La
N
j+2
Tk
X; = S RI+2
J/'k+j
Thtd)k
ij (ilaZZ) -
CPLCT + R 1<ip=ig<j+1
CXSSCT 1§217é12§]+1
CAY(PL —PL)(A)TCT =1y =7+2
CAYPL —PEYAWVE)TCT 4y 4y iy Vig=75+2
X,, = A"PL(A2)T 4L, - A"L, (A™)T

| AL AT + A271Q wherei; < is
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E. At least one up/downcrossing event within an interval

Finally, for this event,P(Ceyqct; Aapproz) = Z;l:l Py;,
with identical definitions of?, ;, x;, andXy; as in the previous
case.

APPENDIXIII
OPTIMAL ALARM SYSTEM COMPUTATIONS FORP(Aypproz)
AND P(Cea:act7AappTo;E)

A. Up/downcrossing event spanning an interval

The probability of alarmP(Appres ). fOr this event can be
computed as in Egn. III.1.

P(Aapprom) = P(|§3k\k| < L;\ |~%k+d|k| > LJ,D (”I-l)
= / ./\f(x,ux7 Yy) dx+ ...
L; L
Lt
/ N (x5 pix, Xxc) dx
X = { mk‘k ] € R?
Thtd|k
T
_| € L PR C
Ex* |: CAd :| (Pssipss) |: CAd :|

The probability,P(Cezact, Aappros ), TOr this event is shown
in Egn. 111.2.

P(Cefcacta Aapprom) =

P(|zx] < Ly |wpral > L lige| < Ly, [Ekgae] > LF)

L o) Ly o)
/ / / N (X5 pie; Bxc) dX + ...
L3 L}

_LX
/ / / B N(x; pix, Bx) dx + ...
/ / / : N(x; pixe, Bxc) dx + ...
—-LJ- —L, JL}

N 1, ) dx (111.2)

o A
A T, Cuq 2
c - y Ux,. — S R
Il P I el
A Tk _ | Cuq ] 2
= , = eR
*a Thtdlk } ¢ { Crq
_ Xc _ | Hx. 4
X = _Xa},ux—{ﬂxa}eﬂ%
s [ CcPLCT + R CPL(AT)iCT
* — | cAPLcT  CPLCT+R
T
_ C I AR C
Zxa - I CAd :| (Pss - Pss) |: CAd :|
[ an Exa,
T IS ]
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B. End of interval up/downcrossing event

The  probability  of

alarm, P(Aupproz)

P(Cegact; Aappros) Can be computed as in Egns.

and II1.4, respectively.
P(Aappror) =P

(IZkpan] < Las [Earael > LE)
L, 0o
= / N(x; pix, ) dx + ...
-L, JL}
L, ,—L%
/ N(x; px, V) dx

and
1.3,

(111.3)

P(Cewacta Aapprox) =

P(lzktal > Ly [Zxrap| > L4)

// N (5 fiey ) dx + ..

/ / N(x; px, Xx) dx + . ..
i
/ / N (x5 pix, Bxc) dx + ...
LX — 00

-Ly J-o0 -Lh p-L
X = { A£k+d|k ] € R? [oo [oo N (o6, X dix (116)
Lh+d+1|k . x = { ;kard ] c R2
o CA‘ (PL ~ PR) CA? k+d|k
x CAd+1 ss ss CAd+1 > (Z ; ) - CP?S(;T +R il = iQ =1
X 1,02) — CAd(P£S _ Pi)(Ad)TCT 0.W.

and P(CezactyAapprox) = P(|$k+d‘ < L, ‘xk+d+1| >
Lo |Zkram] < L4, | Eksarael > LE)

L 0O L, 00
/ / / N(X; iy, Bxc) dx + ...
- —L, JL}

A

D. At least one exceedance/fade event within an interval

The  probability of alarm, P(Aeppros)
P(Cegact; Aapproz) Can be computed as in Eqgns.
and 111.8, respectively.

and
1.7,

L poo pL, p—L%
/ / / N (x5 pix, ) dX + ...
LJL L, J—- d
L L Ly oo P(Aapprox) P(U ‘i'k+z\k‘ Z LXI) (“|7)
/ / / N (x5 pix, Bc) dx + ... i=0
~LJ-co J-L, JL}
L —L Ly —L}% = m |Epael < L,)
/ / / N(x; pix, Xxc) dx — (l11.4)
J—LJ—oo J—-L, J—00
x. A Tktd }7 C—[Cuq}ERQ = 1—/ j\/(x Lixc, D)X
| Tk+d+1 Cpq
| Thtd+1lk Crq Trk Crq
x = Xe :| i = |: Hx, :| c R4 X = . e = c Rd+1
L Xa ) Xa ; Thtd)k Crq
CP,CT+R CA“PL (AT)i+1CT T
Yk = d+1 Y L C C
CA%PL, (CA ) CPLCT + R L oan
) h h T EX = . (Pss - Pss) .
r d R d d d
2x = C%—&-l (PSLS - P?s) C%—i—l cA CA
“ CA CA . S . .
. Mathematical curiosities of this type of covariance ma-
Y, = x. Yx, } trix as related to control theory, specifically the property of
| Yx,  2x, observability, are discussed in greater detail in [3]. Further-

more, it is convenient that the number of terms required

to compute the complicated multi-dimensional level-crossing

and €vents as presented in Eqn. IIl.7 above can be reformulated

m 5to achieve better scaling properties. This is largely due to the
way in which the aggregate probability computation can be
rewritten using basic axioms of probability. Computing the

same probability for the events related to thermal sensation

C. End of interval exceedance/fade event

The  probability of alarm, P(Aupprox)
P(Cegacts Aappros) Can be computed as in Egns.
and 111.6, respectively.

P(Aapproz) = P(|Zkta] > LE) (11.5)  complaint application shown in [3] requires the brute force
N inclusion/exclusion rule which results in an explosion of terms.
— 99| — L Therefore, reformulation of the probability computation works
\/CAd(PL -~ PR)(Ad)TCT advantageously, and this can also be applied to probability
5 5 computations for events related to the thermal sensation com-
and

plaint application. However, using the inclusion/exclusion rule
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for these computations may provide a similar accuracy for less Tk
computational burden for reasons discussed in [3]. : Cu
q
x = | U =] 1 | eRMIH
P(Cewacta Aappro:c) = P(Oewact) R xklk C,Uq
P I - <o+ L Thtdlk
(lewl > ’Q}'““"“'— AT S (i) = | CPECTHR 1<ii=ir<j+1
- el CX..CT 1<iz#iy<j+1
d -1 d X, = A"PL(A”)" + L — A"L (A")T
Zp(ﬂ |zkril < L, |zpes| > L, ﬂ |Zhripe] < L) L,, = AL, AT + A1 Q wherei; < iy
j=1 =0 i=0
(111.8) -
where P(Cemdct) was previously given in Egn. 44, and C C
Plze] > L Nizo [Ertin] < LJAE) = x, = : (P, —PJ) :
CA‘ CA‘
/ / . J\/(xux, x)dx+ ... C c 17
Yoo = : (PSL PR)
/ / . N(x [, T )dX CAY CA‘
ZX- Zxca
d+2 Ex = |: ETL Zx :|
xk C'u Xeca a
L)k 4 E. At least one up/downcrossing event within an interval

X = . y Hx = : € R -
: C. The  probability of alarm, P(Aeppro.) and
Thtdlk Ha P(Cegacts Aappros) Can be computed as in Eqns. 1.9,
and 111.10, respectively.

c 1" ]
Sk, =C(Py, ~PL) | P(Aappros) = Pllngl < L, | [@nsil > L, )(111.9)
cA‘? i=1
= P(lggpl < Ly) —
c c 17 -
. P(j@xpel < Lo () [rsael < LF)
Seo = | 0 | (PE-PH | i=1
CA“ CA‘ L;
C(PL, — PE)CT
5o CPiSCT+R Exc \/ ( ss ss)
T EQ Yixa Ly
and \/C PR CT
P..
J / / N(X Mx,s x)d
d = j-1 d
Zp(ﬂ |Tktil <L, |wp45] > L, ﬂ |pipel < LK) A
j=1 =0 =0 i'k;‘]g r C/.Lq
X = : S lx = : € R*!
Lo L L e
L, C rc 1"
L L =L L%, LY, d d
/ / / / / N (%, fix, B )dx CA | CA
—L J-LJ-co J-LY,  J-LY, And finally,

d+j+2 P(Cexact7 Aappro:z:) =
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d 7j—1
S P(() |zrsil < Ly lwwrg| > L[] < Ly) — ..
j=1 =0
Cezact
d d

> P(Cezact(5): 1rpel < L, [ [Ersapel < LE)  (11.10)
j=1 i=1
1

where P((;Zg |vk+i| < L, |wksj| > L |#gs| < Ly) =

Lod L
[ )

N (X, pix, Xx )dx

Jj+2
Tk Cuq
X = x = : € Rit2
Lh+j C
i,klk luq
Sy (inia) = CPLCT+R 1<ii=ip<j+1
xc\"bh B2 = CX,.CT  1<ij#ia<j+1
Xy, = AYPE(A®)T 4L, — AUL, (A™MT
L,, = AL, AT + A1 Q wherei; < iy
C T
CA‘
s [ =T
* Zxa C(PSLS - Pﬁ)CT

and
d

P(Cemacta |£k|k| < L,Z7 m |j’.k+i\k‘ < LX) =
1=1

L L poo L, L%, LY,
—L -LJL J-ryJ-r} —Ljd
- + +
L L =L Ly L%, Ly,
N (x, pix, Xx ) dx
-L —LJ—oo J—Ly J-L} ~-L},

d+j+2
S
Crq
X = Tkt  Px = € Ré+I+2
Tk ’
. Chlq
| Tktdk |
s (i CPLCT+R 1<ij=iy<j+1
x. (i1, 12) T rrr=J
CX,.C 1<ii#ia<j+1
Xss = AilPﬁs(Ab)T + LSS - Ail LSS (Ail)T
L, = AL, AT + A2"1Q wherei; < iy
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